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� The Copiosity Principle is
demonstrated.

� Calibrations by nonlinear mapping
and feature expansion.

� The RBM algorithm was modified to
work with NIR spectra.

� The results were statistically vali-
dated using Bootstrapped Latin
Partitions.
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a b s t r a c t

A modified algorithm for training a restricted Boltzmann machine (RBM) has been devised and
demonstrated for improving the results for partial least squares (PLS) calibration of wheat and meat by
near-infrared (NIR) spectroscopy. In all cases, the PLS calibrations improved by using the abstract features
generated from the RBM so long as the nonlinear mapping increased the dimensionality. The evaluations
were validated using bootstrapped Latin partitions (BLPs) with 5 bootstraps and 3-Latin partitions which
proved useful because of the statistical learning and random initial conditions of the RBM networks. By
using a noise decay parameter, initial large amounts of noise could be used and the benefits of simulated
annealing achieved as the noise level is slowly decreased. This paper demonstrates for the first time that
using abstract features and enlarging the spectral data can improve the calibration results and exem-
plifies the Copiosity Principle. Two NIR reference datasets were evaluated. The first set of wheat spectra
was calibrated for protein concentration and the second set of meat spectra was calibrated for moisture,
fat, and protein concentration. The RBM feature extraction improved the linearity of the models and
reduced embedded noise. The RBM also can help eliminate some difficult spectral preprocessing stages
such as variable alignment and feature selection. RBMs benefit from derivative preprocessing of the NIR
spectra or other preprocessing that enhances the differences among the spectra.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The recent success of deep learning has renewed interest in

artificial neural networks with many successful applications [1].
Deep learning refers to feed forward neural networks with many
layers. Training multiple layers of a neural network is slow and
difficult by backpropagation. One innovation to resolve slow
training is to use layers of restricted Boltzmann machines (RBMs)
that were invented by Hinton [2]. The advantage of these networks
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is that they are unsupervised and can select features in the data so
that each layer can be trained independently. Hence, they are
referred to as stackable. They also do not rely on backpropagation
for machine learning, but instead, an algorithm devised by Hinton
referred to as contrastive divergence [3]. This approach relies on
stochastic learning which helps avoid local minima.

Deep learning has already proven useful for handwriting, voice,
and image recognition in many applications that are used today [1].
It would make sense to exploit the feature selection aspects of the
RBM as a preprocessing method for analytical measurements. Deep
learning is just now making some advances in chemistry. It has
been applied [4] and reviewed [5] with respect to drug discovery.
Stackable RBMs were applied to a deep belief network (DBN) to
improving biological activity prediction for a quantitative
structure-activity relationship model [6]. Three-dimensional
desorption electrospray ionization (DESI) mass spectrometry (MS)
imaging of metabolic heterogeneity of cancerous tumors [4] is an
application of deep learning to bioanalytical chemistry.

RBMs were designed for binary input data such as black and
white images [7]. However, they have been used on data that were
continuous in the interval of [0, 1] [8]. Chen and Murray developed
and implemented a continuous RBM [9] which can accommodate
any range of input data. One feature of their learning algorithm
which is the scaling of the inputs for the sigmoid function was
adapted for the algorithm presented here. Their algorithm was
evaluated for spectral preprocessing, however, it failed to perform
adequately.

The new algorithm presented in this paper resembles the Hin-
ton algorithmwith training by contrastive divergence using a single
step. The scaling factors to control the sigmoid slopes were added
which was devised by Chen and Murray [9] with a small modifi-
cation to the learning step. One other departure from conventional
RBM training is that random noise is added only during the forward
propagation of the algorithm. The rationale for this modification is
that the subspace defined by the spectra will be maintained. In
other words, the weights W will be constructed from only linear
combinations of the spectra.

The idea of stackable layers is intriguing with each layer capable
of modeling higher order relationships in the data. It is worthwhile
studying single hidden layer RBMs for their capability as feature
selectors. If a layer of RBMs fails to transmit information, it can
never be regained from a successive layer. RBMs can be combined
with traditional chemometric classification and calibration algo-
rithms. This paper will study RBMs as spectral conditioners for
calibration and apply them to near-infrared (NIR) spectral mea-
surements of wheat and meat. An enhanced algorithm will be
presented that allows continuous data in the range between 0 and 1
to be modeled.

Although reconstruction of the spectra is interesting especially
whenmeasurements are missing from the data, it is not the subject
of this study. This study presents the use of RBMs to expand the
dimensionality of chemical data such as spectra to improve cali-
bration. This approach is known as the Copiosity Principle [10]. The
key idea is that by using a nonlinear mapping to a higher dimen-
sional space, the calibration methods have more degrees of
freedom to find the correlations in the dataset.

2. Theory

The data set X is represented as a matrix withm rows of spectra
and nmeasurements (i.e., spectral resolution elements). The role of
the RBM is to produce a nonlinear mapping from the data X to Y so
that Y has m rows of r nonlinear features. In the computer science
literature, the spectral data X are referred to as visible units and the
features Yas hidden units, although in this case they are not hidden

but will be output and used by PLS. The mapping occurs in two
directions from X to Y and from Y to X using an n� r matrix of
weightsW that represents the connection strengths. The RBMs also
include a nonlinear function that usually serves to restrict the range
of the products with the weight matrix W and they allow the
weights to grow to large values when the nonlinear function is
saturated (i.e., have values at the limits of 0 and 1).

The network is a bipartite bidirectional graph, which means the
weight matrix W is used in both the forward and reverse propa-
gations. The transpose of the weight matrix is used in the reverse
propagation so during training the weight matrix will converge to
an approximately orthogonal form so that the transpose will be
equal to the inverse. Fig. 1 is a schematic of a simple RBM. The
nonlinear function can be any of several functions but for this work,
the sigmoid function is used. The sigmoid is a very popular logistic
function and is important with respect to fuzzy entropy calcula-
tions [11,12]. The sigmoid logistic function is given below for both
forward (1) and backward (2) propagations.

yi ¼
�
1þ e�ay1ðxiWþbyþNð0;sÞ Þ ��1

(1)

bxi ¼ �1þ e�ax1ðyiW
TþbxÞ��1

(2)

The term ax and ay are scale parameter row vectors that control
the slopes of the sigmoid functions in the forward and backward
directions. They are multiplied element-wise1with respect to the
other terms in the exponent. Each spectrum xi is multiplied by the
weight matrixW. The products are corrected with a bias by that is a
row vector with r elements. Random deviates from the normal
distribution N(0, s) with mean 0 and standard deviation s are
added to the r bias corrected products. Then these values are
transformed with the nonlinear logistic function to produce the
outputs of the layer yi that is row i of Y.

Equation (2) has the same functional form except that it works
in the reverse direction by use of the transpose of the weight ma-
trix. The ax and bx are the respective scale and bias row vectors for
the n spectral inputs just like ay and by are the scale and bias cor-
rections for the rweight outputs. The reverse directionwill use yi to
reconstruct spectrum bxi. Another modification from literature is
the random deviates are not used in the reverse direction. Later, bxi
will be used as the input for equation (1) to yield byi.

Because the asymptotes of the sigmoid function are 0 and 1, it is
important that the input data is properly scaled to fall within this
range. The scaling is for the entire the calibration set is given below.

Fig. 1. Schematic of an RBM bipartite bidirectional network. The n input units are the
red circles (i.e., spectra) and the r hidden units (i.e., features) are the blue circles. The
connection strengths are stored in the weight matrix W, which is used to propagate
signals in the forward (up) and backward (down) directions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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