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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A novel ensemble method named as
robust boosting neural networks
with random weights (RBNNRW) is
proposed.

� Hampel robust step is introduced for
the method.

� The method has marked superiorities
in predictive accuracy and stability
especially when outliers exist.
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a b s t r a c t

Neural networks with random weights (NNRW) has been used for regression due to its excellent per-
formance. However, NNRW is sensitive to outliers and unstable to some extent in dealing with the real-
world complex samples. To overcome these drawbacks, a new method called robust boosting NNRW
(RBNNRW) is proposed by integrating a robust version of boosting with NNRW. The method builds a
large number of NNRW sub-models sequentially by robustly reweighted sampling from the original
training set and then aggregates these predictions by weighted median. The performance of RBNNRW is
tested with three spectral datasets of wheat, light gas oil and diesel fuel samples. As comparisons to
RBNNRW, the conventional PLS, NNRW and boosting NNRW (BNNRW) have also been investigated. The
results demonstrate that the introduction of robust boosting greatly enhances the stability and accuracy
of NNRW. Moreover, RBNNRW is superior to BNNRW particularly when outliers exist.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Analysis of complex samples is a great challenge in laboratories

and industries due to their complex composition and the un-
avoidable outliers [1e3]. Therefore, rapid and robust analytical
techniques for reliable quantification of components in complex
samples are needed. Spectroscopic methods coupled with multi-
variate calibration [4e6] have been widely used in the analysis of
agricultural, petrochemical, medical and other products. Con-
struction of high quality multivariate calibration models is the key
for quantitative analysis of spectroscopy. Among multivariate
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calibration methods, partial least squares (PLS) [4,7] is one of the
most popular methods to model a target when there are a large
number of variables, and those variables are highly correlated or
even collinear. Noting that sample spectra and targets may not
follow a linear relationship, nonlinear modeling techniques such as
artificial neural network (ANN) [8e10] should be in place to pro-
duce more accurate prediction results. Although feed-forward
neural networks with error back-propagation have been widely
used in resolving nonlinear regression problems, it suffers from
local minima, sensitivity of parameter option and slow learning rate
since all the parameters of the networks need to be tuned itera-
tively [11].

A special method for single-hidden layer feed forward neural
networks (SLFNs) named as feed forward neural networks with
randomweights (NNRW) was proposed by Schmidt et al. [12]. They
gave some experimental evidence showing that the weights of
neural networks are of less important and could be generated
randomly without adjusting iteratively [12]. Huang et al. [13]
proved theoretically that the input weights and hidden layer biases
can be generated randomly and popularized [14] this method as
extreme learning machine (ELM). We mentioned the method as
NNRW in this study since it is the origin of ELM. NNRW has
attracted an increasing attention in quantitative modeling of
complex samples [8,15] due to its advantages of simple structure,
high learning speed and good generalization performance.

The random initialization of weights and hidden layer biases
increases the learning speed and reduces optimization parameters
of NNRW. However, this random initialization also makes NNRW
unstable in practice [16e18], which means different runs of the
NNRW model will lead to fluctuation in the predictive results. In
addition, the output layer weights of NNRW are computed by a
simple batch learning scheme, such as the standard ordinary least
squares (OLS) method [19]. This makes NNRW tend to suffer from
outliers in the training set [17,20], which originate from the
recording mistakes or exceptional circumstances and are usually
unavoidable in the actual complex samples [21e23]. In brief, NNRW
is unstable and sensitive to outliers. Therefore, it is highly
demanding to develop new approaches for improving the stability
and robustness of NNRW.

In recent years, many efforts have been devoted to improving
the performance of NNRW. Some robust versions of NNRW have
been developed [17,24] to improve the predictive accuracy with the
presence of outliers in the training set. Although the robust ability
of NNRW is enhanced greatly, the problem of instability still exists.
It has been discovered that an ensemble of sub-models is one of the
best ways to improve both the accuracy and stability of a single
model [4,25]. The most popular ensemble strategies are bagging,
boosting and random forest [26]. These ensemble strategies have
been widely used to improve the performance of single multivar-
iate calibration models such as PLS [27e32], ANN [9,10], support
vector regression (SVR) [33e35]. Recently, ensemble NNRWmodels
have also been developed to improve the stability of NNRW [15,18].
However, few studies improve the stability and robustness of
NNRW simultaneously [36].

As one of the most prominent ensemble strategies [26,37],
boosting has attracted increasing interest in chemometrics
[27e32,34,35]. By combining a series of rough and inaccurate sub-
models, boosting can obtain an accurate prediction. Such a series of
sub-models is developed by using the training subsets selected
from the original training set according to the distribution of the
sampling weights. For the first cycle, all the samples in the training
set are given the same sampling weights. In the following cycles,
the samples with larger predictive errors are given higher weights,
implying that the worse predicted samples are more likely to be
picked up into the training subset for the subsequent iteration. Such

a sampling strategy will degrade or even ruin the performance of
boosting, especially when outliers are present [28]. Recently, Shao
et al. [3] and Zhou et al. [26,28] have designed robust version of
boosting by introducing a robust step before renovating the
weights to improve the performance of PLS and regression tree,
respectively. The robust step is carried out by depressing the
weights of the samples larger than a certain value to prevent the
samples with large errors from being selected in the following
training subset.

To improve the stability and robustness of NNRW, a novel
method named as robust boosting NNRW (RBNNRW) is proposed
for multivariate calibration of complex samples. To assess the
predictive ability of RBNNRW model, the conventional PLS, NNRW
and boosting NNRW (BNNRW) have also been investigated with
two datasets with priori known outliers and one neat dataset. Re-
sults show that robust boosting can improve the predictive accu-
racy and stability of NNRW greatly while keep most of the
appealing properties of NNRW with the presence of outliers.

2. Experimental

Three spectral datasets were used to evaluate the proposed
method. Dataset 1 consists of visible-near infrared (Vis-NIR)
spectra and six properties of 884 wheat samples. The Vis-NIR
spectra and the protein contents are used in this study. The
spectra were scanned on a Foss Model 6500 over 1050 channels
recorded in the wavelength range of 400e2498 nm with the digi-
tization interval 2 nm. The reference values of protein contents
were determined at the Grain Research Laboratory, Winnipeg. The
dataset was contributed by P.C. Williams and can be downloaded
freely from http://www.idrc-chambersburg.org/shootout2008.
html. According to the description in the website, the samples
Nos. 680 and 681 are two outliers.

Dataset 2 consists of ultraviolet (UV) spectra and four hydro-
carbon contents of 115 light gas oil and diesel fuel samples. The UV
spectra and monoaromatics contents are used in this study. The
spectra were measured with Cary 3 UV-visible spectrophotometer
(Varian Instruments, San Fernando, Calif.) over 572 channels
recorded in the wavelength range 200e400 nm with the digitiza-
tion interval 0.35 nm. The reference values of monoaromatics
contents were measured with HP model G1205A supercritical fluid
chromatography (Hewlett-Packard, Palo Alto, Calif.). The dataset
was supplied by Wentzell et al. [38] and can be downloaded freely
fromhttp://myweb.dal.ca/pdwentze/downloads.html. According to
the description in the website, the sample No. 115 is an outlier.

Dataset 3 consists of NIR spectra and six physical properties of
256 diesel fuel samples [39]. The NIR spectra and total aromatics
contents are used in this study. The spectra were measured at
Southwest Research Institute (SWRI) on a project sponsored by the
U.S. Army. Each spectrum is composed of 401 variables recorded in
the wavelength range 750e1550 nm with the digitization interval
2 nm. The reference values of the total aromatics contents were
measured by the American Society of Testing and Materials (ASTM)
standard method. The dataset was provided by SWRI, San Antonio,
TX through Eigenvector Research, Inc. (Manson, Washington) and
can be downloaded freely from http://www.eigenvector.com/Data/
SWRI. From the description in the website, the dataset has been
thoroughly vetted and no outlier exists.

Before calculation, the three datasets were divided into training,
validation and prediction sets for model building, parameter opti-
mization and performance validation, respectively. For the three
datasets, the training sets described on the websites were used as
the training sets and the original prediction sets on the websites
were divided into validation sets and prediction sets by KS algo-
rithm for this study. Furthermore, the reported or artificial outliers
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