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� TDA: a new paradigm for cluster
analysis in the framework of imaging.
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a b s t r a c t

Analytical chemistry is rapidly changing. Indeed we acquire always more data in order to go ever further
in the exploration of complex samples. Hyperspectral imaging has not escaped this trend. It quickly
became a tool of choice for molecular characterisation of complex samples in many scientific domains.
The main reason is that it simultaneously provides spectral and spatial information. As a result, che-
mometrics has provided many exploration tools (PCA, clustering, MCR-ALS …) well-suited for such data
structure at early stage. However we are today facing a new challenge considering the always increasing
number of pixels in the data cubes we have to manage. The idea is therefore to introduce a new paradigm
of Topological Data Analysis in order explore hyperspectral imaging data sets highlighting its nice
properties and specific features. With this paper, we shall also point out the fact that conventional
chemometric methods are often based on variance analysis or simply impose a data model which
implicitly defines the geometry of the data set. Thus we will show that it is not always appropriate in the
framework of hyperspectral imaging data sets exploration.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral imaging is today a choice tool for characterising
complex samples in different scientific domains. It is obvious that
instrumental developments have first contributed to this potential
but multivariate data analysis tools have really revealed its

potential. Many chemometric algorithms have been developed in
order to explore hyperspectral data cubes without a priori such as
Principal Component Analysis (PCA), clustering techniques, Multi-
variate Curve Resolution-Alternating Least Squares (MCR-ALS) but
we must admit that we are always more hampered by the
increasing number of pixels (i.e. spectra) in our data sets. Although
these tools allow us to extract valuable information about major
compounds, it is still difficult to extract information about minor
ones, all the more so due to the bad signal to noise ratio we often
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observe in molecular spectroscopy. It is in this sense that we need
to explore new paradigms such as topological data analysis.

Mathematicians usually use topology in order to study shape of
abstract objects. Nevertheless they have discovered a short time
ago that it could be used for the exploration of real-world data sets
and topological data analysis (TDA) was born [1e4]. Since then,
many papers have demonstrated the great potential of the concept.
The first domain taking advantage of the method is certainly
biology at large.We thus findmany papers in genomics [5] with, for
example, the development of a new visualisation tool for expres-
sion Quantitative Trait Locus (eQTL) [6], analysis of immune
response [7,8], viral evolution [9], antibiotic resistance [10], bacteria
[11], protein interaction networks [12,13], intestinal development
in preterm and term infants [14], DNA repairing [15], evolutionary
processes [16,17] and cellular development [18]. TDA is also used
for the study of different diseases such as pulmonary embolism
[19], diabetes [20,21], autism [22], asthma [23e25], infections
[26,27], cardiac septal defects and cardiomyopathy [28], ovarian
cancer [29], precision oncology [30], knee osteoarthritis [31], oral
squamous cell Carcinomas [32] and chronic fatigue syndrome [33].
It is also used in neuroscience for the study of the activity in the
visual cortex [34], the analysis of traumatic brain injury [35,36] and
the identification of neuroimaging biomarkers for patients with
serious mental illness [37]. The first paper in analytical chemistry is
dedicated to the analysis of more than 20.000 samples in order to
reveal pedogenetic principles of European topsoil system [38]. This
article demonstrates the good scalability of the approach able to
explore and summarize quite big data sets. Another very inter-
esting paper is focused on finding the best nanoporous materials
for gas storage [39]. It was not until 2016 that a first TDA paper is
published in physical-chemistry and, more specifically, in molecu-
lar spectroscopy [40]. This article is dedicated to Raman analysis of
single bacteria. It is then demonstrated that TDA is able to classify
spectra of different bacteria strains considering different experi-
mental conditions wherever classical clustering methods fail. We
come to realize that TDA seems to have nice properties for the
analysis of spectroscopic data sets. With this in mind, proposing an
article dedicated to the development of TDA for the analysis of
hyperspectral data cubes is a natural extension. The first part of the
paper will introduce the TDA concept in the framework of hyper-
spectral imaging and provide details about the data set used in this
study. A second part will give details about TDA network con-
struction and results concerning clustering with TDA compared
with Kmeans algorithm.

2. Materials and methods

2.1. Image data set

The paper of Andrew and al [41]. is the origin of the hyper-
spectral data set we use in this study. An oil in-water emulsion
system is then explored with Raman spectroscopy. The complexity
of this multicomponent/multiphase system explains the fact that
we have selected it. Moreover it has been already explored in
different chemometric papers which is very interesting for com-
parison purpose [42,43]. The hyperspectral data set contains 3600
preprocessed spectra (i.e. a data cube of 60 pixels by 60 pixels) with
a spectral range from 950 cm�1 to 1800�1and thus 253 spectral
variables. Spectral preprocessing has been used prior data analysis
in order to suppress fluorescence effects.

2.2. Topological data analysis of a hyperspectral data cube

The main aim of TDA is first to generate a topological network
which represents the intrinsic shape of the explored data set. Fig. 1

presents its use in the framework of the analysis of a hyperspectral
data cube. Because, like most of the chemometric methods, TDA is
not suited for a direct analysis of a 3D hyperspectral data cube, an
unfolding procedure is used to generate a more convenient 2D
matrix with the size (60 x 60, 253) considering the selected Raman
data set. The TDA is then decomposed in 8 different steps: (1) given
the unfolded data set, we observe each row (i.e. spectrum) through
a lens. In fact, all functions that produce a number from a spectrum
can be a lens. It may originate from different domains such as
statistics (min, max, mean, variance, density …), geometry (cen-
trality, curvature…) and chemometrics (PCA scores, Support Vector
Machine (SVM) distance from hyperplane …) without being
exhaustive. At the end of this step, we have a lens value per spec-
trum of the data set and, by extension, a lens value scale. (2) Then
we divide the lens scale into overlapping subsets. We will observe
the impact of the number of subsets and the percentage of overlap
in the ‘Results and discussion’ section of the paper. (3) Next we then
use scale subsets to partition the data set. Because of overlaps, it is
possible to retrieve simultaneously a spectrum in different pixel
subsets. (4) In this step we consider each pixels subset separately.
Indeed we apply a cluster analysis on each. In general single linkage
algorithm [44] is used but other techniques can be implemented. At
this point starts the construction of the topological network. Each
cluster in each analysis is then represented by a node. (5) We
connect nodes with edges when corresponding clusters have at
least one spectrum (i.e. pixel) in common. (6) Nodes are colored
depending on the number of spectra they contain. (7) The network
is split in different subparts or groups of pixels considering varia-
tions of nodes density and/or particular features of the network
shape. We generate here different classes of pixels. (8) In the last
step, a clustering map is generated considering the coordinates of
each pixel in the sample plane and its class membership.

In this article, Topological Data Analysis was performedwith the
Ayasdi software platform (ayasdi.com, Ayasdi Inc., Menlo Park CA).
An in-house Python script has been developed in connection with
the Ayasdi Python SDK in order to generate the clustering map.

2.3. Kmeans clustering

Many clustering methods have been used for the exploration of
hyperspectral data cubes. However this would not make any sense
to compare TDA results with every possible approach. We have
therefore decided to select K-Means [45,46] (KM) clustering
because it is one of the most popular unsupervised classification
methods. Very briefly, the goal of KM is to separate a set of n
unlabelled data points (defined in a d-dimensional space) into k
clusters. Each cluster is represented by its barycentre called
centroid. As a first step, the algorithm selects at random k initial
points as centroids in the d-dimensional space. We have then an
iterative process defined in two steps: (i) given a chosen distance,
each point of the data set is assigned to the nearest centroid; (ii)
Considering this new partition, centroids are updated for each
cluster. These two steps are repeated until convergence, that is to
say when no more changes are observed in the assignment of all
data points. In this study, the point-to-centroid distance has been
calculated with the Euclidean one. Because partitions from KM al-
gorithm are known to be very sensitive to the initialisation step,
partitioning has been replicated 100 times. The idea here was to
repeat clustering using each time new initial cluster centroid po-
sitions. The partition having the lowest within-cluster sum of
point-to-centroid distances for all the data points is considered as
the optimal one. All KM calculations in this paper have been
developed with MATLAB environment version R2016a (The Math-
Works Inc., Natick, MA, USA) and the Statistics and Machine
Learning Toolbox version 10.2 (The MathWorks Inc., Natick, MA,
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