
Analytica Chimica Acta 813 (2014) 1–14

Contents lists available at ScienceDirect

Analytica  Chimica  Acta

jou rn al hom epage: www.elsev ier .com/ locat e/aca

Non-linear  calibration  models  for  near  infrared  spectroscopy

Wangdong  Nia,b,∗, Lars  Nørgaarda,b,  Morten  Mørupc

a FOSS Analytical A/S, Foss Allé 1, DK-3400 Hillerød, Denmark
b Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
c Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet, Building 321, DK-2800 Kgs. Lyngby,
Denmark

h  i g  h  l  i g  h  t  s

• We  present  a  comprehensive  com-
parative study  of nonlinear  calibra-
tion techniques.

• The  methods  are  connected  in  terms
of  traditional  calibration  by  ridge
regression.

• Three  real-life  near  infrared  (NIR)
data sets  are  used  for  comparison  of
the  methods.

• Different  practical  aspects  of the
methods are  discussed  for  spectral
analysis.
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a  b  s  t r  a  c  t

Different  calibration  techniques  are  available  for  spectroscopic  applications  that  show  nonlinear  behav-
ior. This  comprehensive  comparative  study  presents  a  comparison  of different  nonlinear  calibration
techniques:  kernel  PLS  (KPLS),  support  vector  machines  (SVM),  least-squares  SVM  (LS-SVM),  relevance
vector  machines  (RVM),  Gaussian  process  regression  (GPR),  artificial  neural  network  (ANN),  and  Bayesian
ANN (BANN).  In this  comparison,  partial  least  squares  (PLS)  regression  is used  as a linear  benchmark,  while
the relationship  of  the methods  is  considered  in  terms  of  traditional  calibration  by  ridge  regression  (RR).
The  performance  of  the different  methods  is  demonstrated  by  their  practical  applications  using three
real-life  near  infrared  (NIR)  data  sets.  Different  aspects  of  the  various  approaches  including  computa-
tional  time,  model  interpretability,  potential  over-fitting  using  the  non-linear  models  on  linear  problems,
robustness  to small  or medium  sample  sets,  and  robustness  to  pre-processing,  are  discussed.  The results
suggest  that GPR  and  BANN  are  powerful  and  promising  methods  for  handling  linear  as  well  as  nonlinear
systems,  even  when  the  data  sets  are  moderately  small.  The  LS-SVM  is  also  attractive  due to  its good
predictive  performance  for  both  linear  and  nonlinear  calibrations.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Near infrared spectroscopy (NIR) is a powerful analytical tool
in many different fields due to its non-invasive, fast, and informa-
tive characteristics. It has become one of the most widely applied
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instrumental methods to determine critical attributes closely
related to product quality in areas and industries as diverse as
process analytical technology (PAT) [1,2], food [3], pharmaceut-
icals [4], agricultural [5], and petrochemical [6]. NIR data usually
include hundreds or thousands of wavelengths that contain chem-
ical, physical, and biological information of the analyzed material.
Multivariate calibration methods, such as partial least squares (PLS)
regression [7,8] and principal component regression (PCR) [9],
relate the spectral data to specific variables, based on a linearity
assumption [10] which implies that the NIR spectra are linearly
related to the concentrations. While PLS and PCR have become
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popular due to their ease of use, fast computation, good predictive
performance and easy interpretable representations – the linearity
assumption is not always valid, and thus PLS or PCR may  give non-
optimal results when the spectra exhibit nonlinearities [11,12].

In order to improve performance, PLS and PCR can be extended
to handle nonlinearity by the use of polynomial functions [13], or
nonlinear kernels (KPLS) [14,15]. As a more powerful and flexi-
ble non-linear regression tool, artificial neural network (ANN) has
become a popular method in many areas [16–18], and ANN has
been widely applied in the chemometrics community for spectro-
scopic calibration since the 1990s [16,17,19]. Its broad application
to spectroscopic data analysis is however still limited due to dis-
advantages e.g. issues with local minima solutions where initial
parameter settings affect the final performance and the enlarged
risk of over-fitting leading to a requirement for very large sample
sizes.

An alternative method, SVM [20–22] for regression, has been
applied to develop spectral calibrations. It allows modeling certain
nonlinear relationships in the spectral space by introducing non-
linear kernels. Opposed to standard ANN methods it has a so-called
convex objective function admitting globally optimal solutions that
are most often unique [20,21]. However, computational issues arise
as the model has no closed form solution but forms a quadratic pro-
gramming problem and model parameters need to be optimized
which generally includes a grid based cross-validation procedure
[20,23]. The computational difficulty can be overcome by its vari-
ant, least squares-SVM (LS-SVM) [20,23,24] where the quadratic
problem reduces to solving a set of linear equations allowing a fast
and easy implementation with less parameters to estimate [23,24].
SVM and LS-SVM have been successfully applied to spectroscopic
calibration development in several cases and they are increasingly
regarded as an alternative to ANN [20,24]. A few methods derived
from the Bayesian framework, have been developed to address the
challenges in SVM-based models; Tipping [25] proposed a Bayesian
method for SVM denoted relevance vector machine (RVM), which
has been introduced by Hernández et al. [26] for spectroscopic cal-
ibration.

Recently, Gaussian process regression (GPR) was introduced as
an alternative approach to ANN from a non-parametric Bayesian
learning perspective [11]. GPR was initially developed by O’Hagan
[27], and a significantly increasing interest is observed in different
areas, such as machine learning [28–30] and dynamic process mod-
eling [16,31–33]. The concept of Gaussian processes (GP) emerged
from the area of neural networks. It has been shown that Bayesian
neural networks (BANN) converge to a GP when an infinite number
of hidden units are used and through assigning Gaussian priors over
the weight space of neural networks [33–37]. In other words, BANN
with infinite number of hidden neurons could be formulated as a GP
which is defined by a mean and covariance function. However, as
pointed by Williams [38,44], only a specific transfer function used
in neural networks can be presented as a Gaussian process with a
specific covariance function. BANN requires in general less training
samples than ANN as it invokes prior distributions on the model
parameters that are tuned to address issues of over-fitting [33]. In
order to control for over-fitting in ANN [37] an ‘early stopping’ strat-
egy can be employed to stop training by an independent stop set. In
the BANN model parameters are estimated by Bayesian inference
without using a separate stop data set or cross-validation strategy
as for regular ANNs as pointed out by Neal [33] and MacKay [34].
Instead, the Bayesian approach to parameter estimation makes use
of the model evidence [35] to address issues of over-fitting. A few
empirical comparative studies [11,12,16,31,32] have confirmed the
efficient predictive performance of GPR including its application to
spectroscopic calibrations.

The nonlinear calibration techniques have been compared in
several studies for spectroscopic data analysis. Chen et al. [11]

compared GPR with quadratic PLS (QPLS) and ANN and demon-
strated that GPR performed best for the modeling of nonlinear
spectroscopic data sets. In Hernandez’s study [26], RVM, ANN, SVM,
and LS-SVM were compared to demonstrate that the RVM resulted
in sparse solution where only about 20% or even less training
objects were retained for three spectroscopic calibrations. Com-
parison of GPR, LS-SVM, and ANN was performed by Wang et al.
[12] demonstrating good predictive performance of GPR for the
modeling of three NIR data sets. A performance comparison of PLS,
LS-SVM, and ANN for large NIR data sets is given in the work of
Fernández Pierna et al. [24], where the LS-SVM model achieved
the best performance. Direct comparison between KPLS and SVM
was conducted by Czekaj et al. [39] and the results showed that
KPLS and SVM can generate similar predictive performance. Balabin
and Lomakina [20] presented the comparison of a polynomial PLS
(poly-PLS), ANN, SVM, and LS-SVM. SVM based methods achieved
a comparative accuracy in predictive performance to ANN and they
were recommended for real applications due to their much higher
robustness.

The main goal of the present work, compared to previous
studies, is to comprehensively compare nonlinear methods for
spectroscopic calibrations with PLS as the linear benchmark and
ridge regression (RR) [40,41] as a theoretical connection between
these calibration approaches. Properties/evaluation criteria include
computational time, parametric vs. non-parametric methods, and
performance across different data set sizes. The presented meth-
ods are related and highlighted in Table 1 for a compact outline of
nonlinear methods. The methods to be compared are: KPLS, SVM,
LS-SVM, ANN, RVM, BANN, and GPR. The methods will be compared
with respect to performance on three selected publicly avail-
able NIR data sets reflecting both non-linear and linear relations
between the spectra and the dependent variable. Furthermore, dis-
cussions on the computation time, model interpretability, potential
over-fitting using non-linear models on linear problems, robust-
ness to small sample sets, and pre-processing will be included when
relevant.

2. Introduction of calibration models

Usually, N observations of the training set D = {xn, yn},
n = 1, . . .,  N, where xn has M variables or predictors, are used for
spectroscopic calibration. The relation between the spectral matrix
X and reference vector y is generally described by linear regression
as the problem of finding the regression vector b, as follows:

y = Xb + e (1)

where b = (b1, . . .,  bM)T and e = (e1, . . .,  eN)T is the residuals. How-
ever, the linearity is not always valid and as a result some
calibration problems are nonlinear. One way to address non-
linearity in the data is to extend Eq. (1) to a linear combination of
the response of a set of nonlinear basis functions as follows [25,26]:

yn =
∑M

j=1
�j(xn)bj + e = �(xn)b + e, y = ˚(X)b + e (2)

where �j(xn) is the response of the jth basis function to input xn.
Suppose �(xn) = [�1(xn), . . .,  �M(xn)] is a row vector containing the
response of all basis functions to input xn, �j = [�j(x1), . . .,  �j(xn)]T,
is a column vector containing the response of basis function �j(x)
to all training inputs, and  ̊ is an N × M matrix whose jth column
is vector �j and whose nth row is vector �(xn). M,  herein, is just
the number of basis functions, which does not necessarily equal the
number of variables in the spectra or data set, M.  In the following, it
will be assumed that the residuals contain independent zero mean
Gaussian noise with variance �2, en ∼ G(0, �2). As a result, derived
from the idea of Bayesian learning [11,25,42], given the training
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