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a  b  s  t  r  a  c  t

Microfluidic  devices  have  found  a unique  place  in cellular  studies  due  to the  ease  of fabrication,  their
ability  to provide  long-term  culture,  or the  seamless  integration  of downstream  measurements  into
the  devices.  The  accurate  and  precise  control  of fluid  flows  also  allows  unique  stimulant  profiles  to be
applied  to  cells  that  have  been  difficult  to perform  with  conventional  devices.  In this  review,  we describe
and provide  examples  of  microfluidic  systems  that have  been  used  to generate  temporal  gradients  of
stimulants,  such as  waveforms  or pulses,  and how  these  profiles  have  been  used  to  produce  biological
insights  into  mammalian  cells  that are  not  typically  revealed  under  static  concentration  gradients.  We  also
discuss the  inherent  analytical  challenges  associated  with  producing  and  maintaining  temporal  gradients
in these  devices.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The in vivo environment that cells experience is complicated
due to the number of signals that cells are exposed to, as well as
the spatiotemporal profile of these signals. The temporal profile of
many compounds in vivo is oscillatory, for example hormone secre-
tion, for reasons that are only now beginning to be understood or
investigated [1–3]. These dynamic signals may  be used to increase
the signal-to-noise ratio of the compound over the thousands of
proteins found in serum [4] or reduce receptor desensitization
[5]. In vitro, the time profile of stimulant delivery can affect the
response of the system under investigation, highlighting the need
for accurate reproduction by in vitro systems of the temporal pat-
terns found in vivo. In some cases, delivery of temporally varying
stimulus patterns allow observation and determination of intracel-
lular dynamics or population behavior, both of which are difficult
to observe under a non-changing stimulus.

Advances in understanding the temporal dynamics of cellular
systems are dependent on the analytical devices used to deliver
the stimulant waveforms. The ability to accurately and precisely
control fluid flows affords microfluidic systems new avenues to
study cellular dynamics that have not been possible using con-
ventional macroscale devices. Numerous microfluidic devices have
been applied in the field of diagnostics [6],  cell biology [7],  system
biology [8],  and synthetic biology [9].  Over the last decade, the pop-
ularity of using microfluidic devices shifted the paradigm from not
only analyzing cellular targets, to now also controlling the cellular
microenvironments. For example, a growing field in microfluidic
research is the generation of spatial molecular gradients for study-
ing cellular chemotaxis [10], morphogenesis [11], or electrotaxis
[12]. Several comprehensive reviews have been written on spatial
gradients and their applications in biology [11–14]. More pertinent
to the topic of temporal gradients, was a 2008 review article by
Jovic et al. that summarized how macro-systems have been used
to generate temporal gradients and how the advent of microflu-
idics provided a more effective platform to probe cellular dynamics
[15]. The authors emphasized the need for the development of next
generation microfluidic platforms for studying cellular dynamics.

This review article is focused on advancements in the field
of microfluidic systems since 2009 that use or generate tempo-
ral gradients to study cellular dynamics. The applications in this
review were restricted to mammalian cells, with a recent review
demonstrating systems for investigating the dynamics of yeast and
bacterial cells [16]. Finally, this review article is not meant to be
comprehensive, only a few representative examples have been

highlighted to bring the importance of dynamic stimulations and
the use of microfluidic systems to generate these profiles to the
attention of the readers.

2. Temporal gradient generation

In recent years, there have been many microfluidic devices capa-
ble of generating temporal gradients that have been developed
and used for cellular studies. As in most microfluidic systems, the
devices have a characteristic length scale that is in the microm-
eter range where the fluid dynamics are dominated by viscous
rather than inertial forces. At these scales, the flow is laminar where
parallel streams of fluid mix  only by diffusion at their boundary.
A mixture of glass and plastic devices have been described with
the majority of the ones mentioned in this review being either
poly(dimethyl siloxane) (PDMS) or a combination of PDMS and
glass.

2.1. Microfluidic devices used to generate temporal gradients

A typical microfluidic system used to generate temporal gra-
dients delivers two  or more analytes to a mixing channel where
they mix  to homogeneity prior to delivery to the cells under study
[17]. To produce time varying patterns of reagents, the ratio of the
two reagents are varied in time while maintaining a constant vol-
umetric flow rate. The output concentration waveforms can be in
the form of pulses, square waves, or sinusoidal waves depending
on the application as will be discussed in the following sections. In
Section 2.2, more information will be given for producing the cor-
rect waveform by optimizing the time the reagents spend in the
mixing channel because too little time may  not mix the reagents to
homogeneity, while too much time may  allow dispersion to have a
detrimental effect on the shape of the waveform.

More elaborate methods to produce temporal waveforms have
also been developed. For example, pulse code modulation (PCM)
has been used to produce and deliver stimulant waveforms to gan-
glia of Aplysia californica [18] and also to murine islets of Langerhans
[19–22]. In PCM, discrete pulses of analyte are introduced into a
flowing stream of buffer where they broaden and mix  due to dis-
persion, producing a homogeneous output concentration that is
proportional to the temporal density of the analyte pulses [23,24].
For the device described in [20–22],  two  on-chip diaphragm pumps
[25] were used to deliver pulses of glucose while also driving buffer
through the microfluidic system. By varying the temporal density
of the pulses, sine waves of fluorescein with various amplitudes
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