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a b s t r a c t

A bi-objective optimization problem with Lipschitz objective functions is considered. An
algorithm is developed adapting a univariate one-step optimal algorithm to multidimen-
sional problems. The univariate algorithm considered is a worst-case optimal algorithm
for Lipschitz functions. The multidimensional algorithm is based on the branch-and-bound
approach and trisection of hyper-rectangles which cover the feasible region. The univariate
algorithm is used to compute the Lipschitz bounds for the Pareto front. Some numerical
examples are included.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of bi-objective non-convex optimization

min
x2A

f ðxÞ; f ðxÞ ¼ ðf 1ðxÞ; f 2ðxÞÞ
T
; A � Rd; ð1Þ

is considered, where the properties of the objective functions and of the feasible region will be defined later. Theoretically
the solution to problem (1) consists of two sets: Pðf ;AÞO, the Pareto optimal solutions in the space of objectives (in the
bi-objective case Pðf ;AÞO is frequently called the Pareto front), and Pðf ;AÞD, the set of the Pareto optimal decisions in A
[7]. Analytically these sets can be found only in very specific cases. We are interested in a discrete representation of
Pðf ;AÞO for a class of non-convex objective functions.

The construction of an optimal algorithm in a broad class of global optimization algorithms is difficult [22]; nevertheless
some semi-optimal solutions usually are possible. We assume that the feasible region is a hyper-rectangle A ¼ fx : ai 6

xi 6 bi; i ¼ 1; . . . ; dg, and the objective functions are Lipschitz continuous. For the arguments in favor of the Lipschitz model
we refer to [5,6,10,12,17]. For the alternative approaches in global optimization we refer, e.g. to [4,20,21]. In the present paper
an algorithm is proposed hybridizing branch-and-bound approach, the concept of one-step worst-case optimality with
respect to the class of Lipschitz functions, and trisection of hyper-rectangles covering the feasible region; the latter was orig-
inally proposed in [14,15]. For the review on branch and bound approach in global (including multi-objective) optimization
we refer to [3,5,13,19]. The one-step optimality criterion prevails in the development of optimal algorithms of global optimi-
zation, see e.g. [2,8,11,18,19,23]. The concept of worst-case optimality, which is a standard in the theory of algorithms [1], is
implemented e.g. in [25] to develop a univariate bi-objective optimization algorithm for Lipschitz objective functions.
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We start with an analysis of the possibility to generalize for the multidimensional case the results of [25] concerning the
univariate (d ¼ 1) bi-objective optimization. The problem of construction of the worst-case optimal algorithm for a discrete
representation of Pareto fronts of problems with Lipschitz continuous objectives is considered in [24], where the optimal
adaptive (sequential) algorithm is shown reducible to the passive optimal algorithm which in turn is coincident with covering
of the feasible optimization region by the balls of the minimum radius. We refer to [25] for the arguments that from the appli-
cations point of view the concept of sequential one-step optimality seems appropriate. In the present paper a special class of
the so called diagonal algorithms, which are in detail described in [16], is considered. The feasible region is subdivided by a
diagonal algorithm into decreasing hyper-rectangles. A hyper-rectangle is selected for subdivision on the base of a criterion
which depends on the objective function values at the endpoints of the diagonal. A subdivision rule is included into the
description of the diagonal algorithm. Our goal is to define a criterion of the selection of a hyper-rectangle for subdivision.

2. Lipschitz bound for the Pareto frontier

Let UðLÞ be a class of vector-valued Lipschitz continuous functions where L ¼ ðL1; L2ÞT is the vector of Lipschitz constants
with respect to the city-block metric, i.e. for f ðxÞ ¼ ðf 1ðxÞ; f 2ðxÞÞ

T
2 UðLÞ the following inequalities are valid

jf kðxÞ � f kðtÞj 6 Lk � kx� tk; k ¼ 1;2; ð2Þ

where x 2 A; t 2 A; Lk > 0; k ¼ 1;2, and kx� tk ¼
Pd

i¼1jxi � tij.
The class of Lipschitz continuous functions is advantageous for constructing global minimization algorithms because of

relatively simply computable lower bounds for the function values. The availability of such bounds enables a theoretical
assessment of the quality of a discrete representation of the Pareto front for bi-objective Lipschitz optimization.

Let aðrÞ 2 A and bðrÞ 2 A be the end points of a diagonal of a hyper-rectangle Ar; without loss of generality it is assumed
that aiðrÞ < biðrÞ; i ¼ 1; . . . ; d. As follows from (2) the functions gkðx;ArÞ; k ¼ 1;2, define the lower bounds for f kðxÞ; x 2 Ar:

gkðx;ArÞ ¼max f kðaðrÞÞ � Lk
Xd

i¼1

ðxi � aiðrÞÞ; f kðbðrÞÞ � Lk
Xd

i¼1

ðbiðrÞ � xiÞ
 !

: ð3Þ

The Pareto front of the bi-objective problem

min
x2Ar

gðx;ArÞ; gðx;ArÞ ¼ g1ðx;ArÞ; g2ðx;ArÞ
� �T

; ð4Þ

is denoted by Vr ¼ Vðf ðaðrÞÞ; f ðbðrÞÞ;ArÞ.

Lemma 1. No element of Vr is dominated by a vector f ðxÞ; x 2 Ar.

Proof. Let us assume contrary, that there exist x 2 Ar and y 2 Vr such that z ¼ f ðxÞ � y. Since (3) implies that gðx;ArÞ � z, and
Vr is the subset of non-dominated elements of the set of ff ðxÞ : x 2 Arg, there exists an element v 2 Vr such that

v � gðx;ArÞ � z � y: ð5Þ

However the obtained relation of dominance of v over y can not be truth since both, v and y, are elements of the Pareto
front Vr . Therefore the assumption made at the beginning of the proof is not truthful, and the proof is completed. h

The following definition is a natural sequel of Lemma 1:

Definition 1. Vr is called a local lower Lipschitz bound for Pðf ;AÞO.

Definition 2. The Pareto front of the set
SR

r¼1Vr is called a lower Lipschitz bound for Pðf ;AÞO and is denoted by VðYR;A½R�Þ,
where YR ¼ ff ðaðrÞÞ; f ðbðrÞÞ : r ¼ 1; . . . ;Rg, A½R� denotes the set of hyper-rectangles which constitute partition of A, and
aðrÞ and bðrÞ are the end points of the diagonals of the mentioned hyper-rectangles.

Let us consider the bi-objective minimization problem on a line segment ~AðrÞ

min
x2~AðrÞ

gðx;ArÞ; ð6Þ

where ~AðrÞ denotes the diagonal of Ar . The Pareto front of (6) is denoted by ~VðrÞ.
We show illustration of two objective functions f 1 and f 2 in Fig. 1. The functions are multimodal as can be seen from sur-

face and contour plots. We also show city-block bounding functions computed taking into account function values at the
endpoints of the diagonal of the square ½0;1�2 and different slopes for each objection function. If one views from a certain
angle these lower bounding functions are seen as line segments (see lower plots). These line segments can be interpreted
as bounding functions over diagonal.

Taking such bounding functions into account, the graphical representation of fgðx;ArÞ : x 2 Arg can be made similarly to
[24]. We show such a graphical representation in Fig. 2, where f ðaðrÞÞ ¼ y ¼ ðy1; y2Þ

T ; f ðbðrÞÞ ¼ z ¼ ðz1; z2ÞT , and ~VðrÞ is
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