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1. Introduction

Consider a nonlinear dynamical system described by a differential equation x = f(x), where f : R" — R" is a smooth vector
field. The point x* is an equilibrium point if f(x*) = 0. To find the equilibrium points it suffices to solve n nonlinear equations
with n unknowns. This can be solved using elimination theory-based methods [18], or any local numerical algorithm [20]. A
point x* is asymptotically stable if for all neighborhood M of x*, there exists a neighborhood N of x* such that all trajectories
initialized in A/ converge to x* and remain inside M.

From the theoretical point of view, the Hartman-Grobman theorem states that if fis sufficiently regular around a hyper-
bolic equilibrium state x* then there exists a local homeomorphism between the solutions of the x = f(x) and its linearization
X = Df(x*)(x — x*). In other words, the qualitative behavior of the dynamical system f around x* is the same that of Df (x*).
Therefore, the existence of A is usually provided by studying the eigenvalues of the Jacobian matrix of f at x*. Interval based
methods have already been used to study the stability of dynamical systems. In the case of linear system, a classical result
from control theory states that the origin (which is always an equilibrium state) is stable if and only if all roots of the char-
acteristic polynomial of f have a negative real part. Such a polynomial is said to be Hurwitz stable. In [ 16], Khraritonov gives a
necessary and sufficient effective condition to the Hurwitz stability of a polynomial with interval coefficients. When f is lin-
ear with unknown bounded coefficients (i.e. f can be represented by a matrix whose entries are intervals), the Khraritonov’s
condition only offers a sufficient condition to check that the origin is stable. More recently, Wang and al [17] determine a
necessary and sufficient effective condition to the Hurwitz stability of an interval matrix.

The present paper deals with nonlinear dynamical system. Contrary to the linear case, the stability of an equilibrium state
is, most of the time, only local: the trajectories must be initialized sufficiently close to the equilibrium state x* to converge to
x*. The set of initial states for which the trajectory converges to x* is the attraction domain of x*. The main contribution of this
paper is an algorithm which provides a neighborhood A of x* included in the attraction domain of x*.
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Given an equilibrium for a dynamical system, we have the well-known connection with the linearization near the station-
ary point. By studying this linearization it is more or less straightforward to construct such neighborhoods N/, see for exam-
ple [3,4]. The approach to be considered, based on Lyapunov theory and interval analysis, also proves existence and
uniqueness of an asymptotically stable equilibrium state x* even if we only have a rigorous enclosure of x*.

The paper is organized as follows. Interval analysis is briefly presented in Section 2. Section 3 provides a method and a
sufficient condition to check that a real valued function is positive. In Section 4, we combine interval analysis and Lyapunov
analysis in an algorithm that is able to solve our stability problem. Finally, an example illustrates our approach in Section 5.

2. Interval arithmetic

This section introduces notations and definitions related to interval analysis. An interval [x,X] of R" is a set which can be
written as {x € R", x < x < X} with x and X in R". Here the relation < has to be understood component-wise. Note that this
definition implies that intervals are bounded. The set intervals is usually denoted by IR".

Definition 1. A map [f]: IR" — IR™ is said to be an inclusion map of f:R" — R™ if V[x] € IR",f([x]) C [f]([x]) (where
XD ={f)lx € [X]}).

Interval arithmetic [1,13,19] provides an effective method to build inclusion maps. In [5], Neumaier proves that it is
always possible to find an inclusion map [f] when f is defined by an arithmetical expression. This possibility to enclose
the image of an interval [x] under f is powerful. Indeed, let us suppose that O ¢ [f]([x]), one can conclude that
Vx € [x], f(x)#0. On the other hand, if 0 € [f]([x]), this does not imply that 3x € [x]|f(x) = 0. Fig. 1

Since Moores works [1,2] that introduced interval arithmetic, many algorithms have been developed in different areas,
for example in global optimization [7], non-linear dynamical systems, etc. As interval analysis provides rigorous methods,
these algorithms can prove mathematical assertion. For instance, in 2003, Hales launched the “Flyspeck project” (“Formal
Proof of Kepler”) in an attempt to use computers to automatically verify every step of the proof (partially based on interval
analysis) of the Kepler’s conjecture. Another important example is a generalization of the Newton method called Interval
Newton method. This method can be applied to find all zeros of a given differentiable map f : R" — R". The interval Newton
method creates a sequence of intervals containing zeros of f and has very interesting properties: combined with Brouwer
fixed point theorem, it can prove existence and uniqueness of a zero of f [6,14].

Note that the set of inclusion maps of a given f:R™ — R" can be partially ordered by the relation:
Il < Ifl, <= V[x] € IR", [f];([x]) € [fl,([x]). Due to the fact that the available inclusion map is rarely minimal (related to
<'), interval analysis cannot basically be used to prove the assertion Vx € [x], f(x) > 0 in the case of existence of x, € [x] such
that f(xo) = 0. The next section shows how such a proof can be done by combining interval computation with algebra
calculus.

3. Sufficient condition to check f >0.

This section proposes a theorem which provides a sufficient condition to check the following assertion for a given differ-
entiable real valued function f: Vx € [x], f(x) > 0. The main idea is close to the second derivative criterion classically used in
optimization. Then, an algorithm based on the proposed theorem and interval analysis is presented. Let us recall that a sym-
metric real matrix A is positive definite if Vx € R" — {0}, xTAx > 0. In this paper, the set of positive definite symmetric n x n
matrices is denoted by S™.

Theorem 1. Let f € C*([x] ¢ R", R). If there exists x* < [x] such that f(x*) = 0 and Df(x*) = 0, and Vx  [x], D*f(x) € S**, then
Vx € [x], f(x) = 0and f(x) =0 = x =x*

Proof. The assertion Vx € [x], D*f(x) € S*" implies that f is a strictly convex function defined on a convex set [x]. Since
Df(x*) = 0, one can conclude that in[fJf(x) > f(x*) = 0. The proof of uniqueness is by reduction to a contradiction. Suppose
XE|X]

that there exists x* € [x] such that f(x**) = 0 and x**#x". As f is strictly convex, one has
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Fig. 1. Illustration of inclusion function.
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