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a b s t r a c t

We consider a general class of third order evolution equations. We construct differential
invariants with the employment of the infinitesimal method that using equivalence
groups. We use the differential invariants to classify those equations from the class that
can be mapped into a specific linear equation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Special cases of the general class of evolution equations

ut ¼ f ðx;u;ux;uxxÞuxxx þ gðx;u; ux; uxxÞ; ð1Þ

have been used to model successfully physical phenomena in Mathematical Physics. Such examples is the KdV equation

ut ¼ uxxx þ uux;

the modified KdV equation

ut ¼ uxxx þ u2ux;

the Kðm;nÞ equations, which is a generalization of the above two equations,

ut þ �ðumÞx þ
1
n
ðunÞxxx ¼ 0

and the Harry-Dym equation

ut ¼ u3uxxx:

A complete point symmetry classification of all third-order evolution equations of the form (1) which admit semi-simple
symmetry algebras and extensions of these semi-simple Lie algebras by solvable Lie algebras is presented in [4].

The present paper is in the spirit of the work in Ref. [15], where differential invariants were constructed for the class of
second-order evolution equations
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ut ¼ f ðx;u;uxÞuxx þ gðx;u;uxÞ

and these invariants were used to construct those forms of the above class that can be mapped into the linear heat equation
ut ¼ uxx. In particular, here we consider the problem of finding differential invariants for the general class (1). Furthermore,
we construct differential invariants for the two special cases of (1):

ut ¼ f ðx;u;uxÞuxxx þ gðx;u; ux;uxxÞ ð2Þ

and

ut ¼ uxxx þ gðx;u;ux;uxxÞ: ð3Þ

Galilei symmetry group classification for the class (3) was carried out recently in [7].
The theory of differential invariants of the Lie groups of continuous transformations play important role in mathematical

modeling, non-linear science and differential geometry. Lie was the first to show [21] that every invariant system of
differential equations [22], and every variational problem [23], could be directly expressed in terms of differential invariants.
Furthermore Lie demonstrated [22], how differential invariants can be used to integrate ordinary differential equations, and
succeeded in completely classifying all the differential invariants for all possible finite-dimensional Lie groups of point trans-
formations in the case of one independent and one dependent variable. Lie’s preliminary results on invariant differentiations
and existence of finite bases of differential invariants were generalized by Tresse [33] and Ovsiannikov [27]. The general
theory of differential invariants of Lie groups including algorithms of construction of differential invariants can be found,
for example, in [25,27].

A simple method that introduced by Ibragimov [8] is employed to derive the desired differential invariants. Since
then, there exists a continuing interest in this area of Mathematics and on this specific method. In fact, the method was
adopted by several authors who used it to construct differential invariants for ordinary differential equations [1–3,10,14],
for linear [9,11,16–19,24,35,37] or nonlinear [12,15,29–32,34] or systems of partial differential equations [36]. For example,
Ibragimov [11] derived a solution of the Laplace problem that consists of finding all invariants of the linear hyperbolic
equations

uxy þ aðx; yÞux þ bðx; yÞuy þ cðx; yÞu ¼ 0:

Namely, in addition to the two known invariants derived by Ovsiannikov [26], he constructed three new invariants. An alter-
native approach for deriving differential invariants is Cartan’s method [6,25].

Equivalence transformations play an important part in the theory of invariants. Derivation of equivalence transformations
for the class of equations under consideration is the first step towards to the target which is the determination of differential
invariants. The set of all equivalence transformations of a given family of differential equations forms a group which is called
the equivalence group. There exist two methods for calculation of equivalence transformations, the direct which was used
first by Lie [22] and the Lie infinitesimal method which was introduced by Ovsyannikov [27]. Although, the direct method
involves considerable computational difficulties, it has the benefit of finding the most general equivalence group and also
unfolds all form-preserving (admissible) transformations admitted by this class of equations. For recent applications of
the direct method one can refer, for example, to references [38–41]. More detailed description and examples of both meth-
ods can be found in [13]. The method that we employ here to determine differential invariants requires the equivalence
transformations to be in the infinitesimal form. Hence, we use the infinitesimal method to derive the desired equivalence
transformations.

In what follows, we state certain definitions that we use in the paper. We call an equivalence transformation of a class of
pdes, Eðx; t;uÞ ¼ 0, an invertible mapping of the variables t; x and u of the form

t0 ¼ Qðt; x;uÞ; x0 ¼ Pðt; x; uÞ; u0 ¼ Rðt; x; uÞ ð4Þ

that maps every equation of the class into an equation of the same class, Eðx0; t0; u0Þ ¼ 0. For example, in the case of the class
(1), an equivalence transformation maps (1) into

u0t0 ¼ f 0ðx0;u0;u0x0 ;u0x0x0 Þu0x0x0x0 þ g0ðx0;u0;u0x0 ;u0x0x0 Þ; ð5Þ

where the transformed functions f 0 and g0 can, in general, be different from the original functions f and g. The set of all equiv-
alence transformations forms the equivalence group.

A function of the form

Jðt; x;u;ux;uxx; f ; g; fx; fu; fux ; fuxx ; gx; gu; gux
; guxx

; . . .Þ

which remains invariant under the equivalence group is called differential invariant of order s of Eq. (1), where s denotes the
maximal order derivative of f and/or g. If J ¼ Jðt; x;u;ux;uxx; f ; gÞ, then is called invariant of order zero. An equation of the form

Iðt; x;u;ux;uxx; f ; g; fx; fu; fux ; fuxx ; gx; gu; gux
; guxx

; . . .Þ ¼ 0

is called an invariant equation if it is invariant under the equivalence transformation modulus the equation.
In order to derive the continuous group of equivalence transformations of a class of pdes by means of the Lie infinitesimal

invariance criterion [27], we search for the equivalent operator of the following form:

C. Tsaousi et al. / Commun Nonlinear Sci Numer Simulat 20 (2015) 352–359 353



Download English Version:

https://daneshyari.com/en/article/755709

Download Persian Version:

https://daneshyari.com/article/755709

Daneshyari.com

https://daneshyari.com/en/article/755709
https://daneshyari.com/article/755709
https://daneshyari.com

