Accepted Manuscript

Comparative study of three magnetic nano-particles (FeSO₄, FeSO₄/SiO₂, FeSO₄/SiO₂/TiO₂) in plasmid DNA extraction

H. Rahnama, A. Sattarzadeh, F. Kazemi, N. Ahmadi, F. Sanjarian, Z. Zand

PII: S0003-2697(16)30277-9

DOI: 10.1016/j.ab.2016.08.029

Reference: YABIO 12494

To appear in: Analytical Biochemistry

Received Date: 11 June 2016

Revised Date: 29 August 2016

Accepted Date: 30 August 2016

Please cite this article as: H. Rahnama, A. Sattarzadeh, F. Kazemi, N. Ahmadi, F. Sanjarian, Z. Zand, Comparative study of three magnetic nano-particles (FeSO₄, FeSO₄/SiO₂, FeSO₄/SiO₂/TiO₂) in plasmid DNA extraction, *Analytical Biochemistry* (2016), doi: 10.1016/j.ab.2016.08.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Comparative study of three magnetic nano-particles (FeSO₄, FeSO₄/SiO₂, FeSO₄/SiO₂/TiO₂) in plasmid DNA extraction

*H. Rahnama^{1, 4}, A. Sattarzadeh¹, F. Kazemi^{2, 4}, N. Ahmadi¹, F. Sanjarian^{3, 4}, Z. Zand²

*hrahnama@abrii.ac.ir

Abstract

Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe₃O₄ nano-particle surface utilizing SiO₂ and TiO₂ layer as Fe₃O₄/SiO₂ and Fe₃O₄/SiO₂/TiO₂ and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe₃O₄ nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe₃O₄ coated by SiO₂ or SiO₂/TiO₂ were higher than the naked Fe₃O₄ nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe₃O₄/SiO₂/TiO₂ as a new MNP for separation of DNA molecules from biological sources.

¹Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

²Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

³National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

⁴Gil Nanogene Biotech Co., Research and Development Department, Tehran, Iran

Download English Version:

https://daneshyari.com/en/article/7557297

Download Persian Version:

https://daneshyari.com/article/7557297

Daneshyari.com