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a b s t r a c t

This short communication aims at developing a thermostatted kinetic framework which
includes conservative and nonconservative interactions. Specifically nonconservative
interactions refer to proliferative/destructive and mutative events. The thermostatted
kinetic framework is a set of autonomous partial integro-differential equations with qua-
dratic nonlinearity. How the moments evolution is modified by mutative interactions is
explored in the present communication. Applications refer to the cancer-immune system
competition.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of biological system, especially cancer-immune system competition, is characterized by interactions among
the cells. Specifically cells are able to proliferate and mutate as consequence of interactions among themselves and with the
outer environment. Indeed during the competition, if the immune system is activated then the immune system cells are able
to proliferate and can be able to deplete cancer cells, see paper [1] and the references cited therein. The role of genetic muta-
tions is an important topic in cancer modeling because they are responsible of evolutionary dynamics as stressed by Nowak
[2].

Recently the thermostatted kinetic framework has been proposed for the modeling of nonequilibrium physical and living
systems subjected to external force fields, see the review paper [3]. This framework includes a mathematical term that con-
trols the magnitude of lower-order moments (such as density and energy) in order to prevent the uncontrolled increase of
them. Moreover it considers only the role of conservative interactions among particles, namely interactions that modify the
microscopic state of the particle but not the density. However the thermostatted kinetic frameworks reviewed in [3] cannot
be applied for the modeling of biological systems characterized by proliferative/destructive and mutative events.

This short communication aims at introducing the role of mutative events in the thermostatted kinetic framework
proposed in [4,5] and to analyze how the evolution equations of the moments change. Specifically the mathematical model
refers to complex biological systems decomposed into functional subsystems each of them constituted by particles which
perform the same strategy (progression towards high-values of aggressiveness in cancer cells, activation and recognition
in immune system cells). An external force field acts on the system thereby moving it away from equilibrium and a
mathematical thermostat is inserted in order to control the time evolution of lower-order moments. The particle-function
is modeled by inserting a scalar variable (activity) into the particle-microscopic state; the evolution equations of the
functional subsystems are obtained by considering the interactions in the activity variable.
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The mathematical framework here proposed consists of a partial integro-differential equations system with quadratic
nonlinearity. The framework here proposed is certainly worth of future research activity concerning both its qualitative anal-
ysis (such as the existence and uniqueness theorem of classical and mild solutions [4], the existence of stationary solutions
[5], the convergence towards nonequilibrium stationary states [7]) and quantitative comparison (such as the tuning of a spe-
cific model, within this framework, with in vitro and in vivo experimental data [1]). Finally the derivation of macroscopic
tissue equations from the thermostatted kinetic framework proposed in the paper by performing asymptotic limits is a fur-
ther research perspective, see, among others, [6,8]. This is an important topic considering the difficult to link the dynamics of
a biological system at different levels and scales (genetic, cellular, organ and tissue scales).

It is worth stressing that thermostatted Kac and Boltzmann equations have been considered by various authors, see
papers [8–10], but these equations cannot be applied directly to biological systems and are different from the framework
presented in this communication.

The contents of the present paper are divided into two more sections which follow this introduction. In details, Section 2
highlights the essential mathematical settings. Section 3 deals with the analysis of the moments evolution and how mutative
events modify the evolution equations.

2. The thermostatted kinetic framework with mutative interactions

This section deals with the introduction of mutative interactions into the thermostatted kinetic framework proposed in
[3]. Specifically we consider a complex system decomposed into a finite number n 2 N of functional subsystems and sub-
jected to external force fields. Each subsystem is composed by particles whose microscopic state includes the activity var-
iable u 2 Du � R, where Du is a compact set of R, which models the function expressed by particles.

The time evolution of the system refers to the vector fðt;uÞ ¼ ðf1ðt;uÞ; f2ðt;uÞ; . . . ; fnðt;uÞÞ, where fi ¼ fiðt;uÞ : ½0;1½�Du

! Rþ, for i 2 f1;2; . . . ; ng, is the distribution function of the ith functional subsystem, which is a differentiable function with
respect to the variables t and u. Setting

ef ðt;uÞ ¼Xn

i¼1

fiðt;uÞdu ð2:1Þ

and under the assumption that up ef ðt;uÞ 2 L1ðDuÞ, the pth order moment of the whole system reads:

Ep½f�ðtÞ ¼
Z

Du

up ef ðt; uÞdu; p 2 N: ð2:2Þ

In general E0½f� represents the particles density of the system and E2½f� the activation energy. In particular the pth order
moment of each functional subsystem fi reads:

Ep½fi�ðtÞ ¼
Z

Du

up f iðt;uÞdu; p 2 N: ð2:3Þ

The time evolution equation of each distribution fi is obtained by considering the interactions occurring among the active
particles. Mutual interactions refer to test particles, whose distribution function is denoted by fiðt;uÞ, candidate particles
(with distribution function denoted by fiðt;u�Þ) and field particles (with distribution function denoted by fiðt;u�Þ). Candidate
particles can acquire in probability the microscopic state of the test particle after interactions with field particles. The pos-
sibility of interactions among the particles is measured by the nonnegative function gijðu�;u�Þ which represents the interac-
tion rate between the subsystem u� particle of fi and the u� particle of subsystem fj.

The probability that after the interaction, the candidate particle undergoes a change in its microscopic state (that of test
particle) is measured by the nonnegative function:

Aijðu�;u�;uÞ : Du � Du � Du ! Rþ;

which is a probability density with respect to u and thenZ
Du

Aijðu�;u�;uÞdu ¼ 1; 8 u�;u� 2 Du: ð2:4Þ

Bearing all above in mind, summing up with respect to the all candidate and field particles, and assuming that
gijðu�;u�ÞAijðu�;u�;uÞ f iðt;u�Þ f iðt;u�Þ is an integrable function with respect to the elementary measure du� du�, we obtain
the following operator Gi½f� ¼ Gi½f�ðt;uÞ, which models the gain of test cells:

Gi½f� ¼
Xn

j¼1

Z
Du�Du

gijðu�;u�ÞAijðu�;u�;uÞ f iðt;u�Þ f jðt;u�Þdu� du�

and, similarly, the lost of test cells Li½f� ¼Li½f�ðt;uÞ is modeled by the following operator:

Li½f� ¼ fiðt;uÞ
Xn

j¼1

Z
Du

gijðu;u�Þfjðt;u�Þdu�; ð2:5Þ
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