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a b s t r a c t

In this paper, the solution of the multi-order differential equations, by using Mellin
transform, is proposed. It is shown that the problem related to the shift of the real part
of the argument of the transformed function, arising when the Mellin integral operates
on the fractional derivatives, may be overcame. Then, the solution may be found for any
fractional differential equation involving multi-order fractional derivatives (or integrals).
The solution is found in the Mellin domain, by solving a linear set of algebraic equations,
whose inverse transform gives the solution of the fractional differential equation at hands.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is widely recognized that the memory and hereditary properties of various materials and processes in electrical circuits,
biology, biomechanics, etc., such as viscoelasticity, is well predicted by using fractional differential operators. Such operators
are the generalization, to real (or complex) order, of the classical derivatives and integrals (see e.g., [1–3]). Conversely to the
locally defined classical derivatives, the powerful of the fractional operators in describing the time evolution of many phys-
ical processes and, in general, in modeling the dynamics of complex systems, is due to the long memory characteristics
inherent to these operators. Indeed, dealing with systems characterized by a power type non local interaction, or by a
non-Markovian power law time memory, into which the complexity of the dynamics usually manifest itself, fractional dif-
ferential equations naturally arise in the relative mathematical models [4–6]. As a proof of their powerful in describing nat-
ure, theoretical research on these operators experienced an exceptional boost in the last few decades, and applications can
now be found in various fields of natural sciences. Examples are in electrical circuits [7], in anomalous transport and diffu-
sion processes in complex media [8–11], in material sciences [12–14], in biology [15–17] and biomechanics [18–20], and in
many other branches of physics and engineering [21–23].

Various methods for the solution of differential equation of fractional order are available in literature, including Laplace
method [21,24], Grünwald–Letnikov method [21,25], Adomian method [26] and several others [15,21,27–30]. Some at-
tempts to use Mellin transform and related concepts, have been presented (see e.g., [21]) in order to solve particular classes
of fractional differential equations.

In this paper, a general method of solution for Initial Value Problems (IVP), involving fractional derivatives, is presented
by using the Mellin transform of complex order c ¼ qþ ig. The method takes advantage of the fact that the discretized
version of the inverse Mellin transform may be seen, in logarithmic temporal scale, as a Fourier series and, in time domain,
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as a complex Taylor series with coefficients depending on the fractional integrals in zero. The restitution of the function is
independent on the value of q used to evaluate the discretized inverse Mellin transform, provided it belongs to its so called
fundamental strip. With these informations in mind, in this paper, a method that allow us to relate the value of the Mellin
transform for different values of q belonging to the fundamental strip, is presented. This is the main key to solve multi-order
fractional differential equations in a very easy and direct way. The method is versatile and easy to implement in computer
programs.

The paper is organized as follows: in the next section, the need to handle with fractional differential equation is pre-
sented, with a relevant example in which fractional differential equations appear and whose classical solution is written
in terms of Mittag–Leffler series expansion; in Section 3, the Mellin transform and related concepts are highlighted; in Sec-
tion 4, the solution of the fractional differential equation is presented, along with some applications in Section 5. In appendix
some few basic elements on fractional calculus are reported for completeness sake’s.

2. Fractional differential equations hereditariness

In this section, the relevant example of viscoelastic materials is presented in order to show the importance of the frac-
tional calculus for many physical and engineering problems.

The linear viscoelastic problem is ruled by two different but interconnected functions: (i) the creep function, labelled as
JðtÞ, that is the strain history for an imposed stress history rðtÞ ¼ UðtÞ (unit step); (ii) the relaxation function, labelled ad GðtÞ,
that is the stress history for an imposed strain history �ðtÞ ¼ UðtÞ. In linear viscoelasticity, the Boltzmann superposition prin-
ciple holds, so that

rðtÞ ¼
Z t

0
Gðt � sÞ _�ðsÞds ð1aÞ

�ðtÞ ¼
Z t

0
Jðt � sÞ _rðsÞds ð1bÞ

Eq. (1), valid for quiescent systems in t 6 0, suggest that relaxation and creep functions play the role of kernels, in (1a) and
(1b) respectively. By using the Laplace transform of Eq. (1), the following fundamental relationship

ĴðsÞĜðsÞ ¼ 1=s2 ð2Þ

is easily derived, where ĴðsÞ and ĜðsÞ are the Laplace transform of JðtÞ and GðtÞ respectively. On the other hand, Nutting [31],
by means of experimental tests performed on various materials like rubber, ceramics, etc., showed that in general the relax-
ation function may be written in the form

GðtÞ ¼ ca

Cð1� cÞ t�a ð0 6 a 6 1Þ ð3Þ

and, in virtue of Eq. (2), the corresponding creep function is

JðtÞ ¼ 1
caCð1þ cÞ ta ð0 6 a 6 1Þ ð4Þ

where Cð�Þ is the Euler Gamma function, ca and a are characteristic coefficients of the material at hands. As we insert Eqs. (3)
and (4) in Eqs. (1a) and (1b), respectively we get

rðtÞ ¼ caðCDa
0þ�ÞðtÞ ð5aÞ

�ðtÞ ¼ 1
ca
ðIa0þrÞðtÞ ð5bÞ

where ðCDa
0þ�ÞðtÞ and ðIa0þrÞðtÞ are the Caputo’s functional derivative [32] and the Riemann–Liouville fractional integral,

respectively (see Appendix A). From Eq. (5), some considerations may be drawn: (i) The viscoelastic constitutive law is ruled,
in its direct and inverse form, by fractional operators (derivative and integral) of the same order ðaÞ. (ii) If a ¼ 0, then the
elastic constitutive law is recovered while, if a ¼ 1, the Newton–Petrov constitutive law of pure fluid appears. It follows that
the constitutive law of a viscoelastic material has an intermediate behavior between pure fluid and pure elastic solid. (iii) For
quiescent systems for t 6 0, the Caputo’s fractional derivative coalesces with the Riemann–Liouville fractional derivative,
and the two operators in Eqs. (5a) and (5b) are the inverse each another.

In order to capture different behaviors for more complex systems like bones [18], bitumen [33], and so on, the constitu-
tive law has to be modified by inserting others fractional order operators, to obtain differential equations of the kind

rðtÞ ¼
Xn

k¼0

ca
kðCDak

0þ�ÞðtÞ ð6Þ
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