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a b s t r a c t

This paper presents an explicit, computationally efficient, recursive formula for computing
the normal forms, center manifolds and nonlinear transformations for general n-dimen-
sional systems, associated with semisimple singularities. Based on the formula, we develop
a Maple program, which is very convenient for an end-user who only needs to prepare an
input file and then execute the program to ‘‘automatically’’ generate the result. Several
examples are presented to demonstrate the computational efficiency of the algorithm.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Normal form theory has been used for several decades as one of the important tools in simplifying the study of nonlinear
differential systems. Its basic idea is to introduce a near-identity transformation into a given differential system to eliminate
as many of the nonlinear terms as possible, which are usually called non-resonant terms. The terms retained in the resulting
system are normal form terms, called resonant terms. Since normal forms keep the fundamental dynamical characteristics of
the original system in the vicinity of a singular point, it can be used to study the local bifurcations and stability/instability
properties of the original system. There are various of books which have extensive discussions on normal form theory, for
example, see [1–3]. More recent progress can be found in the article [4].

For higher-dimensional dynamical systems, normal form theory is usually applied together with center manifold theory,
see [5–9]. If the Jacobian matrix of a differential system evaluated at a singular point contains eigenvalues with zero real part
and non-zero real part, then center manifold theory should be considered in the study of the local dynamics of the system,
and the dimension of the center manifold is equal to the number of eigenvalues with zero real part. Center manifold theory
plays an important role in simplifying the analysis of local dynamical behavior of nonlinear differential systems near a sin-
gular point, because it allows us to determine the behavior by study the flow on a lower dimensional manifold.

Several computer algebra systems such as Maple, Mathematica, Macsyma, etc., have been widely used for the computa-
tion of normal forms. Even with the help of these computer algebra systems, it is still not easy to obtain higher-order normal
forms since considerably more computer memory and computational time are demanded as the order of normal forms
increases. Therefore, in the past two decades, various methods have been developed to compute normal forms for general
n-dimensional differential systems. However, many methods are not computationally efficient because lots of unnecessary
computations are involved, for example, see [6,10,11]. To be precise, in order to get an expression for the kth-order normal
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form computation, (k� 1)th-order normal forms, center manifolds and near-identity transformation are substituted into the
original system. Thus, besides the kth-order terms, the obtained expression also contains lower-order (< k) and higher-order
(> k) terms, which are not desirable for efficient computation. To overcome this problem, Yu [7,12] developed a recursive
formula for computing the coefficients of normal forms and center manifolds, which avoid those lower-order (< k) and
higher-order (> k) terms in the kth-order computation. However, these formulas are not given in explicit recursive
expressions and may be not so efficient in computation. For general planar systems, [13] obtained an explicit recursive
formula for computing Poincaré–Lyapunov constants (focus values), and the computation based on this formula is efficient.

In this paper, we consider general n-dimensional differential systems associated with semisimple cases, i.e., the Jacobian
matrix of the linearized system evaluated at a singular point can be transformed into a diagonal Jordan canonical form.
Around semisimple singularities, a rich variety of bifurcations, such as Hopf, double-zero, Hopf-zero, double-Hopf, etc.
may occur. A detailed study for some types of these bifurcations can be found in [14, chap. 7] by applying normal form theory
to simplifying the systems. Particularly, for some special bifurcations like Hopf-zero, double-Hopf without resonance, the
normal forms are symmetric with respect to rotation in the direction associated with the imaginary eigenvalues. In this case,
the normal forms can be decoupled, and the systems are further simplified. Many methods have been developed and used to
compute the normal forms of systems with semisimple singularities, not only for the particular cases like Hopf [9,12,13],
Hopf-zero [15] and double-Hopf [16,17], but also for general semisimple cases involving center manifold [6,7]. In order to
provide a good algorithm to compute the normal forms of general cases, in this paper we will develop a computationally
efficient method and a Maple program without restriction on the dimension of the center manifold. This paper is an exten-
sion of our recent work [9], which focuses on general differential systems associated with Hopf bifurcation.

In the next section, an explicit, computationally efficient, recursive formula is derived for computing the normal forms
and center manifolds of dynamical systems associated with semisimple singularities. The explicit formula is given in terms
of the system coefficients of the original differential system, which is easily used for developing a Maple program. In Section
3, several examples are presented to demonstrate the computational efficiency of the method and the Maple program.
Finally, conclusion is drawn in Section 4.

2. Main result

Consider a system of differential equations in the general form,

_y ¼ Ay þ GðyÞ; y 2 Rn; GðyÞ : Rn ! Rn; ð1Þ

where the dot represents differentiation with respect to time, t, the matrix A is diagonalizable, Gð0Þ ¼ 0 and DyGð0Þ ¼ 0. De-
note by ki; i ¼ 1; . . . ;n, the eigenvalues of A. Without loss of generality, it is assumed that there are only k eigenvalues
kj; j ¼ 1; . . . ; k, having zero real part, implying that system (1) has a k-dimensional center manifold.

Then, through a proper linear transformation, system (1) can be transformed into

_x ¼ Jxþ fðxÞ; ð2Þ

where J is a diagonal matrix, and fðxÞ is expanded as

fðxÞ ¼
X
mP2

fmðxÞ; where fmðxÞ ¼
X
fmðnÞg

fmðnÞx
m1
1 xm2

2 . . . xmn
n

and mðnÞ denotes a vector ðm1;m2; . . . ;mnÞ of n nonnegative integers, which satisfies
Pn

j¼1mj ¼ m.
Suppose that the matrix J has the form J ¼ diagðJo; JrÞ, where

Jo ¼ diagðk1; k2; . . . ; kkÞ; Jr ¼ diagðkkþ1; kkþ2; . . . ; knÞ:

Let x ¼ ðxT
o ;x

T
r Þ

T , where xo ¼ ðx1; x2; . . . ; xkÞT and xr ¼ ðxkþ1; xkþ2; . . . ; xnÞT . Then, system (2) can be written as

_xo ¼ Joxo þ foðxo;xrÞ;
_xr ¼ Jrxr þ frðxo;xrÞ:

ð3Þ

The center manifold of (3) may be defined as xr ¼ HðxoÞ, which satisfies Hð0Þ ¼ 0, DHð0Þ ¼ 0. Then, the differential equa-
tion describing the dynamics on the center manifold is given by

_xo ¼ Joxo þ foðxo;HðxoÞÞ: ð4Þ

Next, introduce a near-identity nonlinear transformation, given by

xo ¼ uþ Q ðuÞ ¼ uþ
X
mP2

X
fmðkÞg

qmðkÞu
m1
1 um2

2 . . . umk
k � qðuÞ; ð5Þ

into (4) to obtain the normal form,

_u ¼ Jouþ CðuÞ; where CðuÞ ¼
X
mP2

X
fmðkÞg

cmðkÞu
m1
1 um2

2 . . . umk
k : ð6Þ
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