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a b s t r a c t

In this paper, some coupled retarded systems on networks (CRSNs) are studied. Applying the
idea of Razumikhin method and Mirchhoff’s matrix tree theorem, the sufficient conditions
for global exponential stability of the CRSNs are obtained. Finally, an example of coupled
retarded oscillator system on networks is given to illustrate the advantages of our results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, coupled systems on networks (CSNs) have been widely studied owning to their potential applications in
the areas of biological systems [1,2], neural networks [3,4], epidemic models [5,6] and chemical systems [7–9]. At the same
time, the stability for delay neural networks has attracted the attention of an increasing number of scientists due to their
potential application in different areas such as applications of synchronization of coupled oscillators [10–12] and consensus
problems of networked control systems [13]. The stability of equilibrium is the precondition of applications of CSNs in
practice. Therefore, there are a great amount of literatures on this topic. In [9,14], Li et al. used graph theory to explore
the global stability for general coupled systems of ordinary differential equations on networks. Furthermore, by using the
results, some novel sufficient conditions of global stability for some mathematical models were effectively given in
[5,6,15–22]. In [23], Chen and Sun investigated the coupled systems on networks with constant delay by applying the tech-
nique in [9]. Moreover, the method was extended to stochastic cases in [8,24], and to discrete time neural networks with
finite and infinite delays in [3].

In the study of coupled system, it is an interested problem that the change of connections affects the dynamical properties
of coupled system. In [25], Achlioptas et al. explored that incorporating a limited amount of choice in the classic Erdö–Rényi
network formation model causes its percolation transition to become discontinuous. In [26], Sakyte and Ragulskis investi-
gated that two stable regimes of the complete network can coexist under continuous weak stimulation: the oscillatory
synchronized regime and the quiet regime, where all neurons stop firing completely.

Because the dynamics of coupled systems depends on not only the individual vertex dynamics but also the coupling
topology, the stability analysis for coupled retarded systems on networks (CRSNs) is generally a complex and formidable
task. In this paper, we use the technique in [9,14] to consider the exponential stability of CRSN. In reference to the results,
our contributions are as follows:
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� Both Razumikhin method and Mirchhoff’s matrix tree theorem are used to obtain the sufficient conditions for the global
exponential stability of CRSN (1). The novel approach that allows one to construct Lyapunov functions for CRSN (1) by
using Lyapunov functions of vertex systems in the network.
� These conditions obtained in this paper are presented in terms of the topological property of networks and have an

important leading significance in the design and applications of globally exponentially stable CRSNs.

The organization of this paper is as follows. The problem formulation and some basic preliminaries are given in Section 2.
In Section 3, the main results, which guarantee the CRSN is globally stable, are provided. In Section 4, we discuss a numerical
example to illustrate the advantages of our results.

2. Preliminaries and model formulation

In this section, we start with some useful notations for the simplicity. Let Rn denote the n-dimensional Euclidean space,
R1
þ ¼ ½0;þ1Þ;Zþ ¼ f1;2; � � �g; L ¼ f1;2; � � � ; lg and m ¼

Pl
i¼1mi for mi 2 Zþ. Let j � j be the Euclidean norm for vectors or the

trace norm for matrices. Let Cð½�s;0�; RnÞ; s > 0 be the space of continuous functions x : ½�s;0� ! Rn with norm
kxk ¼ sup�s6u�0jxðuÞj.

The following basic concepts and theorem on graph theory can be found in Refs. [9,27]. A digraph G ¼ ðU; EÞ contains a set
U ¼ f1;2; � � � ; lg of vertices and a set E of arcs ði; jÞ leading from initial vertex i to terminal vertex j. A subgraphH of G is said to
be spanning ifH and G have the same vertex set. A digraph G is weighted if each arc ðj; iÞ is assigned a positive weight aij. Here
aij > 0 if and only if there exists an arc from vertex j to vertex i in G, and we call A ¼ ðaijÞl�l as the weight matrix. The weight
WðGÞ of G is the product of the weights on all its arcs. A directed path P in G is a subgraph with distinct vertices fi1; i2; � � � ; isg
such that its set of arcs is fðik; ikþ1Þ : k ¼ 1;2; � � � ; s� 1g. If is ¼ i1, we call P a directed cycle. A connected subgraph T is a tree if
it contains no cycles. A tree T is rooted at vertex i, called the root, if i is not a terminal vertex of any arcs, and each of the
remaining vertices is a terminal vertex of exactly one arc. A subgraph Q is unicyclic if it is a disjoint union of rooted trees
whose roots form a directed cycle. A digraph G is strongly connected if, for any pair of distinct vertices, there exists a directed
path from one to the other. Denote the digraph with weight matrix A as ðG;AÞ. A weighted digraph ðG;AÞ is said to be bal-
anced if WðCÞ ¼Wð�CÞ for all directed cycles C. Here, �C denotes the reverse of C and is constructed by reversing the direc-
tion of all arcs in C. For a unicyclic graph Q with cycle CQ, let ~Q be the unicyclic graph obtained by replacing CQ with �CQ.
Suppose that ðG;AÞ is balanced, then WðQÞ ¼Wð ~QÞ. The Laplacian matrix of ðG;AÞ is defined as L ¼ ðpkhÞl�l, where pkh ¼ �akh

for k – h and pkh ¼
P

j–kakj for k ¼ h.

Lemma 1 [9]. Assume l P 2 and ck denotes the cofactor of the k-th diagonal element of Laplacian matrix of ðG;AÞ. Then the
following identity holds:

Pl
k;h¼1ckakhFkhðxk; xhÞ ¼

P
Q2QWðQÞ

P
ðk;hÞ2EðCQÞFhkðxh; xkÞ. Here Fkhðxk; xhÞ is an arbitrary function, Q is

the set of all spanning unicyclic graphs of ðG;AÞ;WðQÞ is the weight of Q;CQ denotes the directed cycle of Q, and EðCQÞ is the set of
arcs in CQ. In particular, if ðG;AÞ is strongly connected, then ck > 0 for 1 6 k 6 l.

In this paper, we consider the global exponential stability for the following CRSNs:

_xðkÞðtÞ ¼ fk xðkÞðtÞ; xðkÞðt � skÞ; t
� �

þ
Xl

h¼1

Hkh xðhÞðt � shÞ
� �

; k 2 L; t P 0; ð1Þ

where sk P 0; xðkÞðtÞ 2 Rm
k ; fk : Rm

k � Rm
k � R1

þ ! Rm
k and Hkh : Rm

h ! Rm
k are continuous functions and satisfy fkð0;0; tÞ ¼ 0 and

Hkhð0Þ ¼ 0 which implies that CRSN (1) has equilibrium x� ¼ ðx�1; x�2; � � � ; x�l Þ
T ¼ 0. Here, we assume that functions fk and Hkh

for k;h 2 L satisfy Lipschitz condition:

1. For each k 2 L, there is a positive constant Lk such that

jfk xk; yk; tð Þ � fk �xk; �yk; tð Þj 6 Lkðjxk � �xkj þ jyk � �ykjÞ

for all xk; yk; �xk; �yk 2 Rm
k and t P 0.

2. For each k;h 2 L, there is a positive constant Lkh such that

jHkh zkð Þ � Hkh �zkð Þj 6 Lkhjzk � �zkj

for all zk;�zk 2 Rm
h and t P 0.

By Theorem 2.2.3 in [28], CRSN (1) has a unique solution xðtÞ ¼ ðxð1ÞðtÞ; xð2ÞðtÞ; � � � ; xðlÞðtÞÞT with initial condition

xðtÞ ¼ /ðtÞ; t 2 ½�s;0�;

where /ðtÞ ¼ ð/ð1ÞðtÞ; . . . ;/ðlÞðtÞÞT is a continuous vector function on ½�s;0�, in which s ¼maxfs1; � � � ; slg.
A digraph G with l vertices can be constructed for (1) as follows: each vertex represents a subsystem and the dynamics is

defined by retarded differential system

_xðkÞðtÞ ¼ fk xðkÞðtÞ; xðkÞðt � skÞ; t
� �

; t P 0: ð2Þ
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