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a b s t r a c t

In the present paper Lie symmetry group method is applied to find new exact invariant
solutions for Klein–Gordon–Fock equation with central symmetry. The found invariant
solutions are important for testing finite-difference computational schemes of various
boundary value problems of Klein–Gordon–Fock equation with central symmetry. The
classical admitted symmetries of the equation are found. The infinitesimal symmetries of
the equation are used to find the Riemann function constructively.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Klein–Gordon–Fock (KGF) equation with central symmetry has form

@2w
@t2 ¼

@2w
@r2 þ

2
r
@w
@r
� b

r2 wðr; tÞ; ð1Þ

where b is a real parameter. Making the point change of variables wðr; tÞ ¼ uðr; tÞ=r (the independent variables do not
change) we reduce Eq. (1) to more simple form

@2u
@t2 ¼

@2u
@r2 �

b
r2 uðr; tÞ: ð2Þ

Eq. (1) as well as (2) are commonly encountered in different classical and quantum physical problems with central symme-
try. For example, Eq. (2) appears in electromagnetics to describe a time evolution of transient electromagnetic fields in
homogeneous media and biconical transmission lines [1–3]. Therefore, both Eqs. (1) and (2) have been studied repeatedly.

All inequivalent coordinate systems providing separation of variables in Eq. (2) have been found in [4–6]. In these works
Eq. (2) is classified as wave equation with special time-independent potential.

Eqs. 1,2 were investigated more completely in the special case when the parameter is b ¼ nðnþ 1Þ, where n ¼ 1;2;3; . . ..
In such case the general solution of Eq. (1) is known [7]
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where Wð�Þ and Uð�Þ are arbitrary sufficiently smooth functions. Also the integral (Laplace, Weber) transform method can be
successfully applied to solve in closed form some boundary value problems for Eq. (1) or (2) only if b ¼ nðnþ 1Þ. This follows
from the fact that in this case inverse integral transformations contain the kernels expressed via modified Bessel functions
with half-integer index which can be transformed into exponential functions. In the more general case when the parameter
b – nðnþ 1Þ is some arbitrary real value the general solution (3) contains fractional derivative and the inverse integral trans-
formations contain the complicated kernels. The peculiarity of this special case can be explained as follows. On the family of
equations parameterized by the constant acts Bäcklund transform that changes the parameter. Therefore, in this family,
there is a countable subset of equations with the parameter b ¼ nðnþ 1Þ that can be reduced to the d’Alembert equation
ðb ¼ 0Þ and a general solution can be found in closed form (3).

From the physical point of view, values of the parameter b ¼ nðnþ 1Þ correspond to electromagnetic fields in the free
space. In the case of a conical metal line the parameter b can be equal to some arbitrary positive value. Thus, closed form
analytical solution of Eq. (2) can be found for a narrow class of physical problems with the parameter b ¼ nðnþ 1Þ. In fact
interesting boundary value problems for Eq. (2) are solved numerically by means of the finite-difference time domain (FDTD)
method [3]. But applying FDTD to solve equations (1), (2) one should be careful near the singular point r ¼ 0 where numer-
ical computational scheme can give unstable results. Therefore, there is a great need for the exact reference solutions of Eqs.
1,2 with the arbitrary parameter b to test the FDTD computational schemes.

The main purpose of this paper is to find new suitable reference solutions of Eq. (2) using the Lie symmetry group (group
analysis) method. The used method of group analysis of differential equations is based on the Lie–Ovsiannikov approach [8–
11]. In the second section making standard technical calculations we obtain infinitesimal operators and local one-parameter
groups of point transformations for Eq. (2). In the third section the well-known classification of the non-equivalent one-
dimensional subalgebras for four-dimensional algebra of Eq. (2) is used to find novel invariant solutions of Eq. (2) which
are convenient for testing and verification of numerical computational schemes of Eq. (2). In the fourth section we show
how the Riemann function of (2) can simply be computed via infinitesimal symmetries.

2. Symmetries of KGF equation with central symmetry

The infinitesimal operator of the local Lie group of point transformations which are admitted by Eq. (2) is

X ¼ n1ðr; t;uÞ @
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The second prolongation of the operator (4) has form
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Applying Lie Theorem about an invariance condition we obtain

X
2

utt � urr þ
bu
r2

� �����
utt¼urr�bu

r2

¼ f11 � f22 �
2bu
r3 n2 þ b

r2 g
����
utt¼urr�bu

r2

¼ 0: ð6Þ

Using the well-known prolongation formula [8–11] one can express the functions f11 and f22 via the components of the vec-
tor field n1; n2 and g. For example, we have
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Substituting the functions f11 and f22 in (6) we obtain the determining equations to find the symmetry of Eq. (2). Derivation
of the determining equations for various differential equations is described in detail in books [8–11]. Solving the obtained
determining equations for Eq. (2) we find the vector field

n1ðr; tÞ ¼ C1

2
t2 þ r2
	 


þ C2t þ C3; n2ðr; tÞ ¼ C1t þ C2ð Þr; gðr; t;uÞ ¼ C4uþ bðr; tÞ: ð7Þ

Here C1; . . . ;C4 are arbitrary constants and bðr; tÞ is arbitrary solution of Eq. (2). Choosing the appropriate constants C1; . . . ;C4

we have the following

Proposition. The maximal invariance Lie algebra of Eq. (2) is an infinite-dimensional algebra which contains a four-
dimensional nontrivial subalgebra. The algebra basis elements are presented by the operators
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