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a b s t r a c t

For a control problem of nonlinear system _x ¼ fðx;u; tÞ, the optimal control by minimizing
a performance index is reformulated to be a set of differential algebraic equations (DAEs)
with the Lagrangian being partially replaced by an exponentially time-decaying constraint:
L1ðx; tÞ ¼ A0e�at , and meanwhile the control force is bounded by juj 6 umax. Then, we
develop an implicit GLðn;RÞ Lie-group DAE (LGDAE) method to find uðtÞ by solving the
DAEs: _x ¼ fðx;u; tÞ and L1ðx; tÞ � A0e�at ¼ 0. Similarly, we propose a new sliding mode con-
trol (SMC) strategy by using the LGDAE to solve the control force, where in addition to the
equivalent control force we add a compensated control force which is used to quickly steer
and continuously enforce the state trajectory on the sliding surface. This novel SMC is
robust and is chattering-free for regulator problem and finite-time tracking problem of
nonlinear systems. Furthermore, we combine the above two methods as being a two-stage
controller for the forced nonlinear Duffing oscillator by stabilizing it to an equilibrium
point. The present SMC together with the LGDAE is also used to stabilize the state trajec-
tory of some uncertain chaotic systems to a desired state point. Its robustness against
uncertainty is obvious.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sometimes we may encounter the problem that some external forces are not yet known, but service for a specific purpose
of controlling the nonlinear plant to a desired goal. Then the resulting problem is a control problem, of which we need to
design a suitable controller to achieve the desired goal. In the class of optimal control problems, the control forces are inten-
tionally designed such that a specified cost functional which weights the cost of control versus the allowed response is min-
imized. The control of nonlinear structural systems has gained much attention in the past several decades, and different
controllers were proposed for the applications to different disciplines [1,2]. In the realm of nonlinear structural control,
Davies [3] has studied the time optimal control problem of the Duffing oscillator. Van Dooren and Vlassenbroeck [4], and
Vlassenbroeck and Van Dooren [5] have introduced a direct method by the Chebyshev series expansion method to solve
the control problem of the Duffing oscillator [6,7]. Razzaghi and Elnagar [8] have applied a pseudo-spectral method and
Lakestani et al. [9] have applied a semi-orthogonal spline wavelets to solve this problem. As a result, all the above methods
required to solve a rather complicated system of nonlinear algebraic equations. Attempting to overcome these difficulties,
Liu [10] has presented an alternative approach based on the Lie-group adaptive method, where the governing equation of
nonlinear system is viewed to be the major part and the performance index as being a subsidiary target equation to be
minimized.
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Besides the conventional performancen-index based control theory, Utkin [11–13] has developed a sliding mode control
(SMC) theory, which is also known as a variable structure control, and which provides a powerful and robust control mech-
anism for linear and nonlinear systems [11,14–17]. In its earlier approach, an infinite frequency control switching is required
to maintain the trajectories on a prescribed sliding surface and then eventually to enforce the orbit tending to the equilib-
rium point along the sliding surface. However, in practice the system states not really locate on the designed sliding surface
after reaching it due to numerically discretizing errors, signal noises as well as structural uncertainties in the dynamical
equations. Since the controller was fast switched during operation, the system undergone an oscillation crossing the sliding
plane. Around the sliding surface is often irritated by high frequency and small amplitude oscillations known as chattering
[18]. The phenomenon of chattering is a major drawback of SMC, which makes the control power unnecessarily large. To
eliminate the chattering, there were some methods being developed [18–21].

The SMC is widely used as a powerful method to tackle uncertain nonlinear systems [22–24]. Roopaei et al. [25] have used
an adaptive gain fuzzy SMC to control nonlinear chaotic systems in the presence of model uncertainty and external distur-
bance. Around the sliding surface, it appears chattering, which is undesirable because it involves high control activity and
may excite high frequency dynamics which is neglected in the modelling course. In this paper we propose a simple sliding
mode control strategy by adding an auxiliary controller which is obtained by solving a set of differential algebraic equations
(DAEs). The resultant controlled system is chattering-free.

This paper is arranged as follows. The preliminaries of conventional performance-index based control law are briefly
sketched in Section 2. Then we introduce a novel approach to replace the optimal control problem of nonlinear system in
Section 3 by directly specifying a time-decaying Lagrangian function, such that we can transform the optimal control prob-
lem into a system of differential algebraic equations (DAEs). Then we derive a simple GLðn;RÞ Lie-group integration method
for the system of nonlinear ODEs. Taking advantage of the Lie-group property, we propose an implicit integration technique
in Section 4, such that we can derive a simple Newton iterative scheme to compute the control force in Section 5. In the
numerical experiments and examples of dynamical systems to be tested we include linear systems and nonlinear systems,
and the latter are further classified as deterministic systems and uncertain systems. The chaotic examples of Duffing oscil-
lator, Lorenz system, Liu system and Lorenz–Stenflo system are included. The examples of regulator problems are given in
Section 6 by applying the Lie-group DAE (LGDAE) method to solve them. In Section 7 we modify the conventional sliding
mode control (SMC) method and apply the Lie-group DAE (LGDAE) method to find the control force. In Section 8 we give
some deterministic systems where the Fuller problem, some numerical examples of regulator problem and finite-time track-
ing problem of chaotic Duffing system are examined to test the performance of the newly developed SMC strategy and the
LGDAE method. In Section 9 we use the new SMC and the LGDAE to solve the stabilization problems of some uncertain cha-
otic systems. Finally, we draw some conclusions in Section 10.

2. Nonlinear plant and conventional control law

The linear quadratic (LQ) optimal control methodologies provide a complete multi-variable design and synthesis theory.
However, the conventional theory gives only an optimal control law for the linear plant without considering the external
disturbance, i.e.,

_xðtÞ ¼ AxðtÞ þ BuðtÞ; 8t 2 ½0; tf �; xð0Þ ¼ x0; ð1Þ

where ½0; tf � is a time interval during which the plant is under a control force uðtÞ.
Upon minimizing the following performance index:

J ¼
Z tf

0
½xTðtÞQxðtÞ þ uTðtÞRuðtÞ�dt; ð2Þ

where Q 2 Rn�n and R 2 Ru�u are positive semi-definite and positive definite, respectively, and the superscript T stands for
the transpose, the optimal control law is found to be

uðtÞ ¼ �R�1BTRxðtÞxðtÞ 8t 2 ½0; tf �; ð3Þ

where Rx is a Riccati matrix obtained by solving the following Riccati differential equation:

_Rx þ Q þ RxAþ ATRx � RxBR�1BTRx ¼ 0; Rxðtf Þ ¼ 0: ð4Þ

Eq. (3) presents a state feedback control law. Unfortunately, the control law (3) upon applied to an externally excited plant is
not the optimal one.

In the conventional state feedback control theory, Eq. (4) is solved numerically backward in time, and with normal values
of weighting matrices and structural properties, the Riccati matrix RxðtÞ remains constant almost over the entire time dura-
tion ½0; tf � except that very near the terminal time tf ; hence, we usually set Rx to be a constant matrix satisfying

Q þ RxAþ ATRx � RxBR�1BTRx ¼ 0: ð5Þ

For its wide application in control theory, there are many techniques to solve the above algebraic Riccati equation [26].
The purpose of this paper is to compute a single control force u in the following nonlinear system:
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