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Artic{e history: We study the problem of the motion of a particle on a non-flat billiard. The particle is sub-
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reflected with respect to the normal axis when it hits the boundary of the billiard. We
prove that the unperturbed problem has an impact homoclinic orbit and give a Melnikov
type condition so that the perturbed problem exhibit chaotic behavior in the sense of
Smale’s horseshoe.
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1. Introduction

Impact conditions naturally appear in several interesting mechanical systems. For example an inverted pendulum
impacting on rigid walls under external periodic excitation is studied in [8], a Duffing vibro-impact oscillator in [16] and
other interesting impact models emerge from understanding the dynamics of rigid blocks [11,14]. Many more stimulating
examples of impact oscillators are given in books [3,4,6,9,12,13] where different numerical and analytical methods are de-
scribed to study their dynamics.

Besides the above examples, there is a broad variety of impact systems represented by billiards. A billiard is essen-
tially given by a convex domain Q c R?> with piecewise smooth boundary and a particle on it whose motion follows
the usual Newton laws of dynamics until it reaches the boundary of Q at which points it is reflected in the opposite
direction with respect to the normal to the boundary at that point, keeping the same scalar velocity. Of course we only
consider trajectories hitting the boundary of Q at its regular points. The theory of flat billiards is by now classical and
very well developed. We refer the reader to [5] for more details and references. However, other kinds of billiards are also
studied. According to [10], for example, a billiard in a broad sense is the geodesic flow on a Riemannian manifold with
boundary.

In this paper we consider such a different kind of billiards: the dynamics of the particle evolves on a surface in R?, it has
unitary mass and is subject to the gravity and an almost periodic forcing alone. Of course, as on alternative view, such a
dynamics may also model a particle moving on a flat billiard immersed in a magnetic field.

The surface is described by a graph z = f(x,y) of a function f € C>(R?,R),f(x,y) > 0 and (x,y) € Q. The particle is forced to
remain in the surface in the sense that, each time it hits the boundary of S := {(x,y,2)|(x,y) € Q,z = f(x,y)} it is reflected in
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the opposite direction with respect to the normal. By normal here we mean a vector 7i in the tangent plane to S which is
orthogonal to the tangent vector to S at the point of S. To be more precise, suppose (x(s),y(s),f(x(s),¥(s))) is a parametric
representation of S then i is orthogonal to the tangent vector to 85 : T = (x'(s),¥'(s), X (S)fx (X(5), ¥(5)) + ¥ (5)f, (x(s),¥(s))) and
to the normal vector to the surface z = f(x,y) : B = (—f(x(s),¥(s)), —fy(x(5),¥(5)),1). So 7i = BAT. For example if, as we as-
sume in this paper, f(x,y) = 0 in a neighborhood of the boundary 9Q, then:
-y'(s)
= x(s)
0

Using D’Alembert principle the equation of motion of the particle without an almost periodic forcing, in S\ dS is given by
[7, p. 662]

X =2f(xy)
y=74xy) (1.1)
Z=-\-g

where g is the gravitation constant. The constraint z(t) = f(x(t),y(t)) and Eq. (1.1) give
~ =g =2 = ifu(x.Y)" +fok + 2 (X Y)XY + iy XV + 2y (%),

which implies

e (n(3) ()

1+Vf)* 7

where Vf and Hy is the gradient and Hessian of f, respectively. We note that Vf = ", which we use several times in our pa-
per. As a consequence the problem is reduced to study the behavior of solutions of an almost periodic perturbation of the
following unperturbed differential equation on Q = {(x,y)|x > 0,0 <y < xtan f}:
X =If(x.y)
y=7xy)

where 1 = A(x,y,%,y) is as in (1.2), and z = f(x,y), together with the requirement that, when (x(t), y(t)) € 9Q then (x(t),y(t)) is
reflected with respect to the normal to 0Q at (x(t),y(t)). Hence the solution of (1.1) is forced to remain in Q.

We emphasize that the main purpose of this paper is to introduce a new class of impact systems modeled by nonlinear
billiards with chaotic behavior. So instead of a gravitational force, we could consider other force fields acting on the particle
under which it is moving inside Q. In this paper, we consider the gravitational field since we think that this problem is inter-
esting itself and in addition, it is rather sophisticated for showing all difficulties of technical computations and theoretical
background.

To continue, given the messy nature of Eq. (1.2), we assume

fx.y) =F(x—a)*+ (y - by’ (1.4)

witha>0,0<b<atanf,0<f <% and Fis a C® function in [0, o) whose support is contained in an interval [0, 13] with
1o > 0 sufficiently small that the closed ball B((a, b), o) is contained in  and such that F' < 0 with F/(0) < 0.

l =

(1.3)

Example 1.1. For illustration, as a concrete example, we take a = cosZ =2 b=sinZ=1 =72 and F(r) = (1 — 16r)° for
0<r<ri={andF(r)=0 forr >  (see Fig. 1).

1.0

Fig. 1. The graph of f(x,y) in this concrete case on 0 < x < 1.2 and 0 < y < min{v/3x,1}.
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