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a b s t r a c t

The stochastic stability and impulsive noise disturbance attenuation in a class of joint
process driven and networked hybrid systems with coupling delays (JPDNHSwD) has been
investigated. In particular, there are two separable processes monitoring the networked
hybrid systems. One drives inherent network structures and properties, the other induces
random variations in the control law. Continuous dynamics and control laws in networked
subsystems and couplings among subsystems change as events occur stochastically in a
spatio-temporal fashion. When an event occurs, the continuous state variables may jump
from one value to another. Using the stochastic Lyapunov functional approach, sufficient
conditions on the existence of a remote time-delay feedback controller which ensures
stochastic stability for this class of JPDNHSwD are obtained. The derived conditions are
expressed in terms of solutions of LMIs. An illustrative example of a dynamical network
driven by two Markovian processes is used to demonstrate the satisfactory control
performance.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid systems have been of interest in the literature since they have many important applications in, for example, robot-
ics, communication systems, chemical processes, and so on. Such systems consist of both continuous variables and discrete
events. Models of hybrid systems have been proposed in various formalism [15], including hybrid automata [1] and hybrid
machines [11–14]. Progresses in modeling and control of hybrid systems can be found in books and literatures [5,7,17,29].

In recent years, most hybrid systems were analyzed as standalone devices, but many practical systems exhibit their
dynamical processes as a network of interacting components. Complexity of the resultant network is derived from topolog-
ical structure, network evolution, connection and node diversity, and/or dynamical evolution [2]. Moreover, the variations of
a networked hybrid system are often monitored by one process whose behavior is conditioned by the other process in order
to change the control accordingly. Thus, we call such a hybrid system joint process driven and networked hybrid system
(JPDNHS). For instance, a fault tolerant control system can be modeled as failures with markovian transition characteristics;
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and an additional random process is a failure detection and identification (FDI) process, which changes the system descrip-
tion through the control reconfiguration strategy [23].

In this paper, the networked hybrid system is modeled by a hybrid machine, because hybrid machines with their explicit
inputs and outputs are particularly suitable for control. The hybrid machine consists of a set of vertices (discrete states). At
each vertex, the continuous dynamics is described by vertex-dependent state equations, which is composed of a set of
subsystems (called nodes) that are coupled together. Both (continuous) dynamics and coupling among subsystems change
as events occur. We assume that events are triggered by an environment and/or a control strategy in a spatio-temporal
random fashion, which means the random process depends upon both time instant t and the index of node i. That is to
say, for different node the event transition matrix is different. When an event occurs, the continuous state variables may
jump from one value to another, since the noise on the channel is impulsive in nature due to a noisy sensor or channel
transmission errors.

The uncontrolled system and the control law monitored by two separable markov processes has random jumping param-
eters and delays. We use a time-varying delay state feedback to control the JPDNHSwD. One typical example is controlling
intelligent robots through the Internet. To ensure stochastic stability and disturbance attenuation, stochastic Lyapunov func-
tions are used. Sufficient conditions on stochastic stability are all derived in terms of solutions of LMIs. An example of
JPDNHSwD with twenty nodes is used to illustrate the results.

The main reason behind using the JPDNHSwD model is to make it more suitable and practical in representing the follow-
ing aspects. (1) It allows a joint process monitoring system. That is, the system description depends on the state of one
process ProI while the input applied to the system depends on the control law in response to the other process ProII. (2)
It allows events generated by the environment and/or the control in a spatio-temporal random switching fashion. (3) It
allows both continuous and discrete dynamics. In particular, continuous variables can be re-initialized when transitions from
one vertex to another occur in the control strategy. Therefore, trajectories of the systems can exhibit jumps. (4) It allows the
networked subsystems to be controlled in a decentralized and distributed fashion. In particular, remote feedback control
with impulsive noise disturbance is considered. Thus, transmitting delays exist in the controller signal and impulsive noise.
(5) It allows both event transitions and dynamical transitions triggered by continuous dynamics. (6) It allows time-varying
delays between subsystems. Some individual aspects listed above have been studied in the literature. (3) is studied in
[7,18,25,27,32] using an impulsive framework. (4) is studied in [21,30] using Internet-based control systems. (5) is studied
in [4,9,16,22,24] in the framework of stochastic hybrid systems. (6) is studied in [6,28,26] using Markovian jump systems.
However, to the best of our knowledge, no paper has addressed all six aspects listed above. The inadequacy of the existing
results in analyzing the stability of JPDNHSwD is the primary motivation of this paper. In particular, no paper has addressed
(1) and (2). We will examine the stochastic stability of joint process driven and networked hybrid systems in which events
are generated in a spatio-temporal random fashion.

Although we consider only two separable processes to drive the system dynamics and control law, our approach is
general and paves the way for future extension of this method to more complex and practical problems. Our approach also
extends Markovian jump systems and connects the work on Markovian jump systems to work on hybrid systems and hence
provides a fresh new look at the problem. In our previous paper [31], we study H1 control for stochastic stability and
disturbance attenuation in a class of networked hybrid systems. In that paper, we consider only event transitions that are
generated by the environment in a Markovian fashion. The trajectories of the systems can exhibit jumps when transitions
from one vertex to another occur in the system dynamics. We consider only one process driven and networked hybrid
systems. All these three aspects are different from what we consider in this paper.

This paper is organized as follows. In Section 2, we first briefly review the hybrid machine model of hybrid systems, and
then present joint process driven and networked hybrid systems with delays to be investigated. The stochastic stability and
impulsive disturbance attenuation problem to be solved is formulated in Section 3. A numerical example to illustrate the
results is presented in Section 4. Finally, some conclusions are drawn in Section 5.

2. Problem formulation

Let C2;1ðRn � Q ; RþÞ denote the family of all nonnegative functions vðx; qÞ on Rn � Q . The notation A > 0 ð< 0Þ is used to
denote a positive (negative) definite matrix. kminð�Þ and kmaxð�Þ represent the minimum and maximum eigenvalues of the
corresponding matrix, respectively. E½�� denotes the mathematical expectation. The identity matrix of order n is denoted
as In (or simply I if no confusion arises). For x ¼ x1; . . . ; xnð Þ> 2 Rn, the norm of x is kxk :¼

Pn
i¼1x2

i

� �1
2 and

jxj :¼ ðjx1j; . . . ; jxnjÞ>. Correspondingly, for A ¼ ðaijÞn�n 2 Rn�n and B ¼ ðbijÞn�n 2 Rn�n; kAk :¼ k
1
2
max AT A
� �

and jAj :¼ ðjaijjÞn�n.
We use the notations A P B and x1; . . . ; xnð Þ> P y1; . . . ; ynð Þ> to imply that aij P bij and xi P yi; i; j ¼ 1; . . . ;n respectively.

2.1. Hybrid machine model

We first review a modeling formalism for a class of hybrid systems which we call hybrid machines [11–13]. An
elementary hybrid machine (EHM) is denoted by

EHM ¼ ðQ ;R;Dy; E; ðq0; x0ÞÞ:
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