
Contour integral method for European options with jumps

Edgard Ngounda, Kailash C. Patidar ⇑, Edson Pindza
Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

a r t i c l e i n f o

Article history:
Received 17 May 2012
Received in revised form 1 August 2012
Accepted 2 August 2012
Available online 16 August 2012

Keywords:
Black–Scholes equation
Jump-diffusion models
Contour integral
Laplace transform
Spectral methods
Domain decomposition method
Greeks

a b s t r a c t

We develop an efficient method for pricing European options with jump on a single asset.
Our approach is based on the combination of two powerful numerical methods, the spec-
tral domain decomposition method and the Laplace transform method. The domain
decomposition method divides the original domain into sub-domains where the solution
is approximated by using piecewise high order rational interpolants on a Chebyshev grid
points. This set of points are suitable for the approximation of the convolution integral
using Gauss–Legendre quadrature method. The resulting discrete problem is solved by
the numerical inverse Laplace transform using the Bromwich contour integral approach.
Through rigorous error analysis, we determine the optimal contour on which the integral
is evaluated. The numerical results obtained are compared with those obtained from con-
ventional methods such as Crank–Nicholson and finite difference. The new approach
exhibits spectrally accurate results for the evaluation of options and associated Greeks.
The proposed method is very efficient in the sense that we can achieve higher order accu-
racy on a coarse grid, whereas traditional methods would required significantly more time-
steps and large number of grid points.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the general framework of the Black–Scholes model, the underlying stock price asset follows a geometric Brownian mo-
tion process and has a continuous sample path defined by

dS
S
¼ ldt þ rdWt: ð1:1Þ

Here S represents the underlying stock price at time t. It is assumed that the associated sample path is continuous. The con-
stants l and r represent the expected return on the stock and the volatility of the return respectively; dWt is the standard
Brownian motion or a Wiener process. The Black–Scholes model predicts that the stock price S follows a log-normal distri-
bution at any future time t, i.e.,

SðtÞ ¼ S0e l�r2
2

� �
tþrWt

� �
:

The continuity of the sample path indicates that the stock price can only change by a small amount in short interval. How-
ever, the reality on the stock market is different. Jumps are regularly observed in the discrete movement of the stock price
SðtÞ. These jumps cannot be capture by the log-normal distribution characteristic of the stock price in the Black–Scholes set-
ting and therefore an alternative model which addresses this shortcoming is necessary.
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To overcome the above mentioned shortcoming, a number of models have been proposed in the literature that more
appropriately describe the movement of the stock price in the market. Among these, the jump-diffusion model proposed
in [9] by Merton is one of the most widely used model. In this framework, the Brownian motion observed in the Black–Scho-
les model is combined with a poisson distribution which model the jumps discontinuities that normally occur on the market
place. For the jump-diffusion model, the movement of the stock price is therefore modeled by the following stochastic dif-
ferential equation (SDE)

dS
S
¼ ðl� kjÞdt þ rdWt þ dq: ð1:2Þ

As in the previous model, r represents the volatility, l is the instantaneous expected return on the stock, and k is the inten-
sity of the poisson precess (or the jump arrival rate), dWt is the increment of the Brownian motion process, j ¼ Eðg� 1Þ,
where E is the expectation and g� 1 is the impulse producing the jump from S to Sg if a Poisson event occurs and dq is
the independent Poisson process defined by

dq ¼
0 with probability 1� kdt;

1 with probability kdt:

�
Using the Itô formula, the SDE (1.2) is rewritten in the form of the following partial integro-differntial equation (PIDE):

@V
@t
¼ 1

2
r2S2 @

2V

@S2 þ ðr � kjÞS @V
@S
� ðr þ kÞV þ k

Z 1

0
VðSgÞwðgÞdg: ð1:3Þ

In the above, VðS; tÞ is the value of the option depending on the underlying stock price S at any given time t; T is the expiry
date, r is the risk free interest rate ðr P 0Þ, k is the intensity of the Poisson process (k > 0), j is the expected jump size, t is the
current time, wðgÞ is the probability function of the jump amplitude g, where wðgÞP 0, for all g, and is defined by

wðgÞ ¼ e
� logg�lð Þ2

2c2ffiffiffiffiffiffiffi
2p
p

cg
: ð1:4Þ

Note that
R1

0 wðgÞdg ¼ 1, and when k ¼ 0 in (1.3), we recover the standard Black–Scholes partial differential equation.
For European options, Merton [9] derived analytical expressions but for most exotic options under jump-diffusion mod-

els, no closed-form solutions exist and one needs to find numerical solutions for the partial integro-differential equations
that arise. However, the convolution integral (1.3) add to the difficulty of finding efficient numerical solutions. Commonly
used finite difference methods (FDMs) hardly attain higher order accuracy [2] and typical quadrature rules such as the trap-
ezoidal and Simpson’s rules are of low order compared to Gaussian quadrature. However, the later is expensive to implement
since it requires the interpolation to match the Chebyshev grid point with those of the FDMs. To reduce the computational
cost in solving the convolution integral term, Fast Fourier Transform (FFT) was used in [2,19].

Tangman et al. [14] proposed a different approach in combining the central difference method and the exponential time
differencing (ETD) scheme to solve (1.3). The ETD method was proved as very effective and gave second order accuracy. This
successful result, encouraged these authors to apply higher order discrete method such as spectral methods to enhance the
spatial convergence of the solution. To get around the non-smooth initial condition, a cluster grid of Chebyshev points at the
discontinuous point and at boundaries were performed and they obtained fourth order results.

Spectral method are attractive for their exponential convergence rate. This presents an advantage for a direct computa-
tion of the convolution integral by a high order Gauss quadrature method. However, high rate of convergence of the spectral
method is only guaranteed for smooth solution, a condition which is not fulfilled for the jump-diffusion model (1.3) which
has a non-smooth initial condition.

To overcome this situation, one might consider using a spectral element approach. This is the approach followed in [18]
where the PIDE (1.3) is solved and the resulting discrete ODE is integrated in time using Crank-Nicolson method. This re-
sulted in spectrally accurate results in space and second order accuracy in time. The exponential results are partly due to
the successful approximation of the integral term by Gauss quadrature rule. However, the application of the spectral element
involved successive approximation of different integrals generated by the weak form and hence computationally expensive.

In this paper, we propose the use of a multi-domain spectral method. This method uses the spectral method directly in
each sub-domains. Matching conditions are imposed to ensure the continuity of the solution and that of its first derivative.
After this spatial discretization, the resulting system of ODEs is solved by the Laplace transformation. To recover the solution,
an inversion of the Laplace transform solution is performed using the Talbot’s method [13] which is based on the application
of trapezoidal rule to approximate a Bromwich integral.

The rest of this paper is organized as follows. In Section 2, we give a description of the jump-diffusion model and derive
formula for the resolution of the convolution integral. In Section 3, we describe the spectral domain decomposition method
for the differential part as well as the integral part. The later is computed by the Gauss–Legendre quadrature. Section 4 deals
with the application of the Laplace transform to solve the semi-discrete problem. We also discuss the error analysis related
to this approximation in this section. Section 5 contains the numerical comparisons of results obtained by approach with
more conventional methods such as Crank–Nicholson for time integration and finite difference for space discretization. Some
concluding remarks and scope for future research are given in Section 6.
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