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a b s t r a c t

The symmetry reduction method based on the Fréchet derivative of the differential oper-
ators is applied to investigate symmetries of the Field equations in general relativity cor-
responding to cylindrically symmetric space–time, that is a coupled system of nonlinear
partial differential equations of second order. More specifically, this technique yields
invariant transformation that reduce the given system of partial differential equations to
a system of nonlinear ordinary differential equations. Some of the reduced systems are fur-
ther studied for exact solutions.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In general relativity the investigation of null fields has acquired considerable interest in connection with the study of
gravitational radiation. In the invariant theory of gravitational radiation, the Riemann tensor plays the central part. The alge-
braic and differential properties of this tensor have been discussed with a view to characterizing wave fields in general
relativity.

The essential idea in the Riemann tensor analysis as applied to radiation theory is that in a gravitational radiation field,
the Riemann tensor will lie in some special relationship to the null cone. One such relationship is [1]

Rhijk þ iR�hijk

� �
xk ¼ 0; ð1:1Þ

where xk is a null vector, Rhijk is the Riemann tensor and R�hijk is its dual. Eq. (1.1) imposes on the Riemann tensor a very se-
vere restrictions, which is satisfied only asymptotically in the wave zone of a radiating system and exactly in plane gravita-
tional waves and a few other special cases.

From (1.1), it follows that

Rij ¼ rxixj; ð1:2Þ

where r is a scalar. Since xi is a null vector, from (1.2) the spur of the Ricci tensor R vanishes identically and through Einstein
field equations the energy momentum tensor can be written as

�8PTij ¼ rxixj: ð1:3Þ
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In the view of (1.3) the four eigen values s(i) determined by the equation

jTij � sgijj ¼ 0

turn out to be zero and then the equation Tijvj = sgijvj admits only one real eigenvector which is null. The energy momentum
tensor given by (1.3) represents some kind of incoherent superposition of wave packets of radiation and any zero rest mass
field can be the source of radiation. We propose, in the present paper, to drive certain solutions of geometrical Eq. (1.2), when
r – 0, for the cylindrical symmetric space time with two degrees of freedom.

1.1. The metric form and the Field equations

We consider the cylindrical symmetric space time [2]

ds2 ¼ expð2w� 2uÞðdt2 � dr2Þ � ðv2 expð2uÞ þ r2 expð�2uÞÞd/2 � expð2uÞdz2 � 2v expð2uÞd/dz; ð1:4Þ

where u, v and w are functions of r and t only. When v = 0, (1.4) reduces to the well known Einstein Rosen metric with one
degree of freedom.

The nonzero components of the Ricci tensor obtained from (1.4) are

R44 ¼ �w11 �
w1

r
þw44 þ u11 þ

u1

r
� u44 þ 2u2

4 þ
expð4uÞ

2r2 v2
4;

R11 ¼ w11 �
w1

r
�w44 � u11 �

u1

r
þ u44 þ 2u2

4 þ
expð4uÞ

2r2 v2
1;

R14 ¼ �
w4

r
þ 2u1u4 þ

expð4uÞ
2r2 v1v4;

R33 ¼ expð4u� 2wÞ u11 þ
u1

r
� u44 �

expð4uÞ
2r2 v2

1 � v2
4

� �� �
;

R23 ¼ vR33 þ
expð4u� 2wÞ

2
v11 �

v1

r
� v44 þ 4ðu1v1 � u4v4Þ

� �
;

R22 ¼ 2vR23 � ðv2 þ r2 expð�4uÞÞR33:

ð1:5Þ

Here and in what follows, the subscripts 1 and 4 after u, v and w represent the partial differentiation with respect to r and t
respectively.

If the direction of propagation of the wave is the positive r-direction, we have here x2 = x3 = 0, x1 = x4 and, therefore,
from (1.2) and (1.4) we get the field equations

R11 � R44 ¼ 0; ð1:6aÞ
R14 þ R44 ¼ 0; ð1:6bÞ
R22 ¼ R23 ¼ R33 ¼ 0: ð1:6cÞ

Making use of expressions for Rij given in (1.5), the relations (1.6a)–(1.6c) give the four differential equations

u11 þ
1
r

u1 � u44 ¼
1
2

r�2 expð4uÞ v2
1 � v2

4

� �
; ð1:7Þ

v11 �
1
r

v1 � v44 ¼ 4ðu4v4 � u1v1Þ; ð1:8Þ

w1 þw4 � rðu1 þ u4Þ2 ¼
expð4uÞ

4r
ðv1 þ v4Þ2; ð1:9Þ

w11 �w44 þ u2
1 � u2

4 ¼
expð4uÞ

4r2 v2
1 � v2

4

� �
: ð1:10Þ

So, we have four Eqs. (1.7)–(1.10) for the determination of three unknowns u, v, and w and one can easily verify that these all
are consistent. Therefore, we drop Eq. (1.10) and solve the remaining equations for u, v and w. It may be pointed out that Eqs.
(1.7,1.8) are a set of coupled, second order, nonlinear partial differential equations in u and v, hence we will concentrate on
these two equations and Eq. (1.9) is first order linear partial differential equation in w, which we will solve once we get u and
v. Rewriting the Eqs. (1.7,1.8)

urr þ
1
r

ur � utt ¼
1
2

r�2 expð4uÞ v2
r � v2

t

� �
;

v rr �
1
r

v r � v tt ¼ 4ðutv t � urv rÞ:
ð1:11Þ

The system (1.11) also represents another important class of Einstein field equations for vacuum [2]. No systematic inves-
tigation of this problem has yet been made (for more details, please refer to [2] pp - 350–351). Examples are the the coun-
terpart of the Kerr solution [3] and of the Tomimatsu–Sato solutions [4]. Due to nonlinearity of exponential order, it is
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