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a b s t r a c t

In this paper, we study the fixed-time coordinated tracking problem for second-order integrator systems
with bounded input uncertainties. Two novel distributed controllers are proposed with which the
convergence time of the tracking errors is globally bounded for any initial condition of the agents.
When relative state measurements are available for each follower, an observer-based distributed control
strategy is proposed which achieves fixed-time coordinated tracking for the perturbed second-order
multi-agent systems. When only relative output measurements are available, uniform robust exact
differentiators are employed together with the observer-based controller which is able to achieve
fixed-time coordinated tracking with reduced measurements. Simulation examples are provided to
demonstrate the performance of the proposed controllers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Coordination control of multi-agent systems has been studied
with great attention in recent years mainly due to its broad range
of potential applications in areas such as coordination of mul-
tiple robots, unmanned aerial vehicles, autonomous underwater
vehicles and spacecrafts [1,2]. Many control tasks have been con-
sidered such as consensus, leader-following, formation, swarming
and flocking. Various types of distributed control laws have been
proposed focusing on different agent dynamics and communica-
tion constraints. Readers are referred to the recent review arti-
cles [3–5] for more details.

In the distributed control of multi-agent systems, an important
performance index of the control strategies is the convergence
speed. Most of the existing control laws are asymptotical
algorithms which means the coordination tasks can only be
achieved as time approaches infinity. Motivated by the advantages
of finite-time convergence laws such as faster convergence
rate, higher precision and more robustness to uncertainties [6],
finite-time coordination of multi-agent systems has attracted
considerable attention recently. Based on the homogeneous
controller design in [7], finite-time consensus control problem
for first-order and second-order multi-agent systems are studied
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in [8,9], respectively. In [10], a continuous finite-time consensus
controller was designed for double integrator systems using the
adding a power integrator technique. Robust finite-time consensus
tracking problem for multirobot systems was studied in [11]
using nonsingular terminal sliding mode (NTSM) control method.
Observe-based control strategies are proposed in [12–14] to
achieve finite-time coordination for both low and high-order
uncertain multi-agent system.

Note however, the convergence time of the above finite-time
control laws dependent on the initial conditions of the agents.
Therefore, a predefined convergence time cannot be guaranteed
since the initial conditions of the agents is usually unavailable in
advance. Motivated by this fact, several new results based on the
notion of fixed-time stability [15] have appeared recently focusing
on designing coordination control laws with guaranteed settling
time regardless of the initial conditions of the agents. In [16]
and [17], nonlinear fixed-time consensus algorithms are proposed
for first-order integrator systems with undirected communication
graphs. The results in [17] were further generalized in [18]
to solve robust fixed-time consensus problems for first-order
integrator systems with bounded input disturbances. In [19], the
fixed-time cluster synchronization problem for complex networks
is discussed with undirected communication topology. In [20],
fixed-time leader-following problem was studied for first-order
integrator systems with unknown nonlinear inherent dynamics
under undirected communication graphs.

Due to the nonlinear nature of the fixed-time convergent
controllers, it is very difficult to generalize the existing results for
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first-order integrator systems [16–20] tomulti-agent systemswith
more complex agent dynamics. A first attempt ismade in the recent
paper [21] where the fixed-time consensus tracking problem for
second-order multi-agent systems with directed communication
graphs was studied based on terminal sliding mode control
method. However, in [21], the control input of each follower
depends directly on the inputs of its neighbors which leads to
a loop problem when there exists cycles in the communication
graph. Furthermore, uncertain dynamics and disturbances are
not considered in the agents. In this work, we further consider
the fixed-time coordinated tracking problem for second-order
multi-agent systems with bounded input disturbances. Observer-
based control strategies are proposed which achieve coordinated
tracking with a guaranteed settling time independent on the
initial conditions of the agents. The contribution of this work
lies in the following aspects. First, compared with the existing
results [16–20], distributed fixed-time coordinated control design
is generalized to a larger class of multi-agent systems modeled as
perturbed second-order systems. Second, the proposed controllers
are truly distributed in the sense that only relative information
is needed in the controller and no information about the global
communication topology is required. Third, a novel fixed-time
convergent NTSM controller for perturbed second-order integrator
systems is developed as a basis for the distributed controller
design. Finally, both the relative state measurements and relative
output measurements cases are considered.

The rest of the paper is organized as follows. In Section 2, some
preliminaries and the problem formulation are given. In Section 3,
fixed-time coordinated tracking with relative state and output
measurements are studied, respectively. In Section 4, coordinated
tracking problem of multiple robotic manipulators is used as
a simulation example to demonstrate the performance of the
proposed controllers. Finally, some concluding remarks are given
in Section 5.

Notation. R+ represents the set of positive real numbers. 0 is
a vector or matrix with all the elements equal to zero. 1N ∈ RN

is a vector with all the elements equal to 1. For a vector x =

(x1, . . . , xn), ∥x∥1 and ∥x∥∞ are the induced 1-norm and infinity-
norm, respectively. sgn(·) is the signum function and sgn(x) =

(sgn(x1), . . . , sgn(xn)).

2. Preliminaries and problem setup

2.1. Graph theory

The communication relation among the agents in the
leader–follower network can be represented by graphs. A directed
graph G = (V(G), E(G)) consists of a finite set of vertices V(G) =

{e0, e1, . . . , eN} and a finite set of edges E(G) ⊂ V(G)×V(G). Each
agent is represented by a vertex in V(G) and an edge is an ordered
pair (ei, ej) which represents the information flow from agent j to
agent i. The set of neighbors of ei is denoted by Ni = {j : (ei, ej) ∈

E(G)}. The degree of ei is the number of its neighbors |Ni| and is de-
noted by deg(ei). A path P in G is a sequence {ei0 , . . . , eik} where
(eij−1 , eij) ∈ E(G) for j = 1, . . . , k and the vertices are distinct.
Graph G is called undirected if (ei, ej) implies (ej, ei). An induced
subgraph Gs of G is a graph such that V(Gs) ⊂ V(G) and for any
ei, ej ∈ V(Gs), (ei, ej) ∈ E(Gs) if and only if (ei, ej) ∈ E(G). In this
paper, we use the vertex set V(Gs) = {e1, . . . , eN} of subgraph Gs
to represent the follower agents. The adjacency matrix A = [aij]
associated with G is defined as aii = 0 and aij > 0 if (ei, ej) ∈ E(G)
where i ≠ j. The Laplacian matrix of G is defined as L = [lij] where
lii =


j≠i aij and lij = −aij where i ≠ j. Since the followers have no

influence over the leader, we have a0i = 0, i = 1, . . . ,N . Moreover
ai0, i = 1, . . . ,N represents the communication relation between

the leader and the followers where ai0 > 0 if follower i has infor-
mation about the leader and ai0 = 0 otherwise. Let Ls denote the
Laplacian matrix associated with Gs, B = diag{a10, . . . , aN0} and
define

H = Ls + B, (1)

then we have the following lemma about the property of H .

Lemma 1 ([22]). If the subgraph Gs is undirected and each follower
has a path to the leader in the graph G, then H is symmetric and
positive definite.

2.2. Fixed-time stability

For the general differential equation

ẋ = f (t, x), x(0) = x0 (2)

where x ∈ Rn and f : R+ ×Rn
→ Rn is a nonlinear function which

may be discontinuous, the solutions of (2) are understood in the
sense of Filippov [23]. Suppose the origin is an equilibrium point
of (2).

Definition 1 ([15]). The origin of (2) is said to be globally finite-
time stable if it is globally asymptotically stable and any solution
x(t, x0) of (2) reaches the equilibria at some finite time moment,
i.e., x(t, x0) = 0, ∀t ≥ T (x0), where T : Rn

→ R+


0 is the

settling-time function.

The origin of the system ẋ = −x1/3 is finite-time stable since
any solution of the system converges to the origin in finite time
T (x0) = (3/2) 3


|x0|2.

Definition 2 ([15]). The origin of (2) is said to be fixed-time stable
if it is globally finite-time stable and the settling-time function
T (x0) is bounded, i.e., ∃Tmax > 0 : T (x0) ≤ Tmax, ∀x0 ∈ Rn.

The origin of ẋ = −x1/3 − x3, x ∈ R is fixed-time stable since it
is globally finite-time stable and x(t, x0) = 0 for ∀t ≥ 2.5 and
∀x0 ∈ R.

2.3. Mathematical lemmas

Lemma 2 ([18]). Let ξ1, ξ2, . . . , ξn ≥ 0 and 0 < p < 1. Then

n
i=1

ξ
p
i ≥


n

i=1

ξi

p

.

Lemma 3 ([18]). Let ξ1, ξ2, . . . , ξn ≥ 0 and p > 1. Then

n
i=1

ξ
p
i ≥ n1−p


n

i=1

ξi

p

.

Lemma 4 ([17]). Consider a scalar system

ẋ = −αx2−p/q
− βxp/q, x(0) = x0, (3)

where α, β > 0, p, q are both positive odd integers satisfying p < q.
Then, the equilibrium of Eq. (3) is finite-time stable and the settling
time is bounded by

T (x0) ≤
qπ

2
√

αβ(q − p)
.

Lemma 5 ([15]). If there exists a continuous radially unbounded
functionV : Rn

→ R+


0 such that (i)V (x) = 0 ⇒ x = 0; (ii) any
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