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a b s t r a c t

In this paper, we analyze the ℓ∞-stability of infinite dimensional discrete autonomous systems, whose
dynamics is governed by a Laurent polynomial matrix A(σ , σ−1) in shift operator σ on vector valued
sequences. We give necessary and sufficient conditions for the ℓ∞-stability of such systems. We also give
easy to check tests to conclude or to rule out the ℓ∞-stability of such systems.
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1. Introduction

Infinite dimensional systems – that is, dynamical systems
defined over an infinite dimensional state-space – arise as a natural
mathematical model for numerous engineering applications. In
fact, any system that is modeled by partial differential/difference
equations (distributed parameter systems) or by delay-differential
equations can be cast as an infinite dimensional dynamical
system [1]. Naturally, the question of stability of such systems is
an important issue. However, owing to the infinite dimensionality
of the state-space, extension of results on stability of finite
dimensional systems is often not possible. The question of stability
of a certain special class of infinite dimensional systems has been
dealtwith in the recent interestingwork of Feintuch and Francis [2]
concerning an infinite chain of vehicles. In [2], the dynamics of the
infinite chain of vehicles follows the nearest-neighbor interaction:
let qn(t) denote the position of the nth vehicle at time t , then

q̇n = f (qn+1 − qn, qn−1 − qn),

where f is the same linear function for all n. Note that, such a
dynamical equation can be written succinctly as:

q̇ = (a−1σ−1 + a0 + a1σ)q, (1)

where q denotes the entire sequence {. . . , q−1, q0, q1, . . .} and
σ is the (left or right) shift operator with a−1, a0, a1 being real
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numbers. The operator (a−1σ−1 + a0 + a1σ) has the structure of
a Laurent polynomial operator in the shift σ . In this paper, we deal
with stability of dynamical systems whose dynamics is governed
by a generalized discrete version of (1): while (1) involves only
scalar trajectories, we consider vector trajectories and instead of
just nearest-neighbor interactions, we consider an operator given
by a general Laurent polynomial matrix. Thus, the systems we are
concerned with are governed by the following type of discrete
dynamical equation:

xk+1(·) = A(σ , σ−1) xk(·), (2)

where A(σ , σ−1) is a square Laurent polynomial matrix in shift
operator σ , and xk(·) is a vector valued sequence defined over
integers.

Unlike its finite dimensional counter-part, stability analysis of
infinite dimensional systems depends crucially on the normed
space chosen as the infinite dimensional state-space. The two
most prevalent normed spaces in this regard are (ℓ2, ∥ · ∥2) and
(ℓ∞, ∥ · ∥∞). While working with (ℓ2, ∥ · ∥2) space is somewhat
easier than with (ℓ∞, ∥ · ∥∞) space, in many questions of practical
significance, it is (ℓ∞, ∥·∥∞) space that becomes themore realistic
choice. For example, in the case of infinite chain of vehicles, ℓ2
perturbation from an equilibrium means: for every ϵ > 0, almost
all the vehicles are within ϵ-neighborhood of their corresponding
equilibrium positions. In a practical scenario, this may not be
realistic. We, therefore, restrict ourselves entirely to the ℓ∞-
stability analysis of systems governed by (2). Such stability analysis
over (ℓ∞, ∥ · ∥∞) space falls under the general setting of stability
analysis over an infinite dimensional Banach space, which is a
recent topic of interest (see [3,4]). In this paper we provide elegant
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necessary and sufficient conditions for the ℓ∞-stability of systems
governed by (2) in terms of spectral radius of A(eiω, e−iω) and
operator norm. These necessary and sufficient conditions may not
always be easy to check; so, we also provide easily implementable
necessary conditions and sufficient conditions for ℓ∞-stability.
These tests can be used to conclude or rule out ℓ∞-stability.

1.1. Notation

We denote the fields of real and complex numbers by R and C,
respectively. We use the symbol F to denote R or C in statements
that hold true for both R and C. The set of integers is denoted
by Z; while the symbols N and N0 are used to denote the set of
positive integers {1, 2, . . .} and the set of non-negative integers
{0, 1, 2, . . .}, respectively.

We use I to denote the identity operator. Transpose of a vector
v (a matrix B) is denoted by v′ (B′). The symbol F∞(Z, Fn) is
used to denote the space of Fn valued bidirectional sequences;
i.e., F∞(Z, Fn) := {a : Z→ Fn

}. To denote the zero element in Fn

and F∞(Z, Fn)we use boldface 0; andwe expect it to be clear from
the context. For x ∈ F∞(Z, Fn), x(j) is used to denote the value of
x at j ∈ Z; therefore, x(j) ∈ Fn,∀ j ∈ Z. We write x(j) = ∗, when
the exact value of x(j) is irrelevant. Analogously for v ∈ Fn, v(j) is
used to denote the jth component of v.

Laurent polynomial ring in a variable σ with coefficients from F
is denoted as F[σ , σ−1]. We use i to denote

√
−1, unless specified

otherwise. The unit circle, the closed unit disc and the open unit
disc in C centered at the origin are denoted as:
SC(0, 1) := {z ∈ C : |z| = 1}, (3a)
BC(0, 1) := {z ∈ C : |z| ≤ 1}, (3b)

Bo
C(0, 1) := {z ∈ C : |z| < 1}. (3c)

1.2. Objective, overview and motivation

Consider the left shift operator σ : F∞(Z, Fn) → F∞(Z, Fn),
which is defined as (σx) (j) := x(j + 1). Its inverse is the right
shift operator, denoted as σ−1. It follows that a Laurent polynomial
matrix A(σ , σ−1) =

p
j=−m Aj σ

j

∈ Rn×n

[σ , σ−1], where Aj ∈

Rn×n for j ∈ {−m, . . . , p}, is awell defined operator onF∞(Z, Fn);
i.e., A(σ , σ−1) : F∞(Z, Fn) → F∞(Z, Fn). In this paper, we study
the following infinite dimensional discrete autonomous system:

xk+1(·) := A(σ , σ−1) xk(·), (4)
where A(σ , σ−1) ∈ Rn×n

[σ , σ−1] and xk ∈ R∞(Z,Rn),∀ k ∈ N0.
The trajectories satisfying (4) can be written as:

xk(·) := A(σ , σ−1)k x0(·), (5)
where x0 ∈ R∞(Z,Rn) is an initial condition.

Later in Section 2.2 we explain that, A(σ , σ−1) is a continuous
linear operator on ℓ∞(Z, Fn). In this paper, we obtain necessary
and sufficient conditions for the ℓ∞-stability of systems given by
(4). We also give easy to check necessary conditions and sufficient
conditions for the ℓ∞-stability of such systems. Stability analysis
of systems given by (4) is closely related to the stability analysis
of discrete 2-D autonomous systems in general (see [5,6]); and
particularly to the stability analysis of time relevant discrete 2-D
autonomous systems (see [7]). When time relevant discrete 2-D
autonomous systems are brought down to the state space form,
the dynamics is exactly same as the one given in (4).

2. Mathematical preliminaries

2.1. Bounded linear operators

Here we briefly mention some preliminaries from functional
analysis; reader can refer to [8–10] for a detailed treatment

on these topics. We are interested in the normed subspace
(ℓ∞(Z, Fn), ∥ · ∥∞) of F∞(Z, Fn); for x ∈ ℓ∞(Z, Fn),

∥x∥∞ := sup {∥x(j)∥∞ : j ∈ Z}. (6)

Let (X, ∥ · ∥x) be any normed space over F. Let T be a linear
operator on a normed space X . The linear operator T is continuous
if and only if there exists α > 0 such that:

∥T (y)∥x ≤ α∥y∥x, ∀ y ∈ X . (7)

Therefore, continuous linear operators are also called as bounded
linear operators. The space of bounded linear (or continuous linear)
operators on X is denoted as BL(X); it is a normed space with the
following induced operator norm: for T ∈ BL(X),

∥T∥x := sup {∥T (y)∥x : y ∈ X and ∥y∥x ≤ 1} (8)
= inf {α ∈ R : ∥T (y)∥x ≤ α∥y∥x, for all y ∈ X}. (9)

The inequality,

∥T (y)∥x ≤ ∥T∥x ∥y∥x, ∀ y ∈ X (10)

is called the basic inequality. The operator T ∈ BL(X) is said to
be invertible (in BL(X)), if T is bijective and the inverse map, T−1,
also belongs to BL(X). For T ∈ BL(X), the eigenspectrum Λe(T )X ,
the spectrumΛ(T )X , the resolvent set Λc(T )X and the spectral radius
ρ(T )X are defined as follows:

Λe(T )X := {λ ∈ F | (λI − T ) is not one-one }, (11a)
Λ(T )X := {λ ∈ F | (λI − T ) is not invertible }, (11b)

Λc(T )X := F \Λ(T )X , (11c)

ρ(T )X := max {|λ| : λ ∈ Λ(T )X }. (11d)

It follows from the definition that,Λe(T )X ⊆ Λ(T )X . If X is a finite
dimensional vector space, thenΛe(T )X = Λ(T )X .

2.2. Laurent polynomial matrix operator

Consider a Laurent polynomial matrix A(σ , σ−1) =
p

j=−m

Aj σ
j

∈ Rn×n

[σ , σ−1] in the shift operator σ . For ease of notation,
we use LA to denote the linear operator on F∞(Z, Fn)1 correspond-
ing to the Laurent polynomial matrix A(σ , σ−1). Now, the trajec-
tories satisfying (4) can also be written as:

xk = LkA x0, (12)

where x0 ∈ R∞(Z,Rn) is an initial condition.
Note that, for a given x ∈ ℓ∞(Z, Fn),

(LA x) (r) = A(σ , σ−1) x(r)

=

p
j=−m

Aj x(r + j)

=

A(−m) A(−m+1) · · · A0 · · · Ap−1 Ap



×



x(r −m)
x(r −m+ 1)

...
x(r)
...

x(r + p− 1)
x(r + p)


, (13)

1 Though A(σ , σ−1) ∈ Rn×n
[σ , σ−1], later for ℓ∞-stability analysis of the system

given by (4), we consider A(σ , σ−1) as an operator over C∞(Z,Cn) also.
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