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a b s t r a c t

The purpose of this paper is to provide a full understanding of the role that the constrained generalized
continuous algebraic Riccati equation plays in singular linear–quadratic (LQ) optimal control. Indeed, in
spite of the vast literature on LQ problems, only recently a sufficient condition for the existence of a non-
impulsive optimal control has for the first time connected this equation with the singular LQ optimal
control problem. In this paper, we establish four equivalent conditions providing a complete picture that
connects the singular LQ problemwith the constrained generalized continuous algebraic Riccati equation
and with the geometric properties of the underlying system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the continuous-time linear–quadratic
(LQ) optimal control problem when the matrix weighting the
input in the cost function, traditionally denoted by R, is possibly
singular. This problem has a long history. It has been investigated
in several papers and with the use of different techniques, see
[1–5] and the references cited therein. In particular, in the classical
contributions [1,2] it was proved that an optimal solution of
the singular LQ problem exists for all initial conditions if the
class of allowable controls is extended to include distributions.
In the discrete time, the solution of regular and singular finite
and infinite-horizon LQ problems can be found resorting to the
so-called constrained generalized discrete algebraic Riccati equation,
see [6,7] and also [8]. A similar generalization has been carried out
for the continuous-time algebraic Riccati equation in [9], where
the constrained generalized Riccati equation was defined in such
a way that the inverse of R appearing in the standard Riccati
equation is replaced by its pseudo-inverse. On the other hand, until
very recently this counterpart of the generalized discrete algebraic
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Riccati equationwas only studiedwithout any understanding of its
links with the linear–quadratic optimal control problem.

The recent paper [10] was the first attempt to provide a de-
scription of the role played by the constrained generalized con-
tinuous algebraic Riccati equation in singular LQ optimal control
problems. Such role does not trivially follow from the analogy
with the discrete case, as one can immediately realize by consid-
ering the fact that in the continuous time, whenever the optimal
control involves distributions, none of the solutions of the con-
strained generalized Riccati equation is optimizing. In particular,
in [10] it was shown that when the continuous-time constrained
generalized Riccati equation possesses a symmetric solution, the
corresponding LQ problem admits a regular (i.e. impulse-free)
solution, and an optimal control can always be expressed as a state-
feedback. This is just a single trait of a rich picturewhere necessary
and sufficient conditions for the existence of regular solutions are
given in terms of the algebraic and geometric structures of the un-
derlying system. The purpose of this paper is to provide a full illus-
tration of this picturewhich nicely complements the list of possible
situations discussed in the pioneering work [2, see p. 332].

Notation. The image and the kernel of matrix M are de-
noted by imM and ker M , respectively; the transpose and the
Moore–Penrose pseudo-inverse of M are denoted by MT and MĎ,
respectively. Given a system in state-space form, we denote by V ⋆

the corresponding largest output-nulling subspace, by S ⋆ the
smallest input containing subspace, and by R⋆ the largest reach-
ability output-nulling subspace, see [11] for details.

http://dx.doi.org/10.1016/j.sysconle.2016.02.018
0167-6911/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2016.02.018
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2016.02.018&domain=pdf
mailto:augusto@dei.unipd.it
mailto:L.Ntogramatzidis@curtin.edu.au
http://dx.doi.org/10.1016/j.sysconle.2016.02.018


A. Ferrante, L. Ntogramatzidis / Systems & Control Letters 93 (2016) 30–34 31

1.1. Preliminaries

Let Q , A ∈ Rn×n, B, S ∈ Rn×m, R ∈ Rm×m. We make the
following standing assumption:

Π
def
=


Q S
ST R


= ΠT

≥ 0. (1)

Thus, the PopovmatrixΠ can be factorized in terms of twomatrices
C ∈ Rp×n and D ∈ Rp×m as

Π =


CT

DT


[C D]. (2)

We define Σ to be the triple (A, B, Π). The classic LQ optimal
control problem associated to Σ can be stated as follows.

Problem 1. Find a piecewise continuous control input u(t), t ≥ 0,
that minimizes the performance index

J∞(x0, u) =


∞

0
[xT(t) uT(t)]


Q S
ST R

 
x(t)
u(t)


dt (3)

subject to the constraint

ẋ(t) = A x(t) + B u(t), x(0) = x0 ∈ Rn. (4)

We consider u to be a solution of Problem 1 only if the
corresponding value of the performance index is finite.1

It is well-known that when R is positive definite, an optimal
control exists (and is indeed unique) if and only if there exists a
control input for which the performance index J∞ is finite. This
is a very mild condition that admits an elegant characterization
in terms of the system matrices (see Remark 1). If R is only pos-
itive semidefinite, in general Problem 1 does not admit solutions.
In fact, to guarantee existence, we need to consider a relaxed prob-
lem where the control input can contain distributions (Dirac delta
distributions and its derivatives). To see this fact, consider the sim-
ple case where n = m = 1, A = S = R = 0, Q = B = 1.
In this case, the feedback control uk(t) = −k x(t), k ≥ 0, gener-

ates the performance index J∞(x0, uk) =
x20
2k . Clearly, for any given

x0, J∞(x0, uk) can be made arbitrarily close to 0 by suitably choos-
ing the constant k to be sufficiently large. In this case 0 is not the
minimum but only the infimum of the values of the performance
index as the control input u(t) varies among piecewise continuous
functions. On the other hand if we are allowed to resort to distri-
butional control input, it is easy to see that the infimum is indeed a
minimum as it can be attained by taking u(t) = −x0δ(t), with δ(t)
being the Dirac delta distribution.

We shall investigate the conditions under which Problem 1
admits solutions (which are, by definition, non-impulsive) in the
general case where R is allowed to be singular. To this end a key
role will be played by the following matrix equation

X A + AT X − (S + X B) RĎ (ST + BTX) + Q = 0. (5)

Eq. (5) is often referred to as the generalized continuous algebraic
Riccati equation GCARE(Σ), and represents a generalization of the
classic continuous algebraic Riccati equation CARE(Σ)

X A + AT X − (S + X B) R−1 (ST + BTX) + Q = 0, (6)

1 Wemake this remark since, if the cost is unbounded for every control, onemight
alternatively say that all controls are optimal since they all lead to the same value
of the performance index.

arising in infinite-horizon LQ problems since in the present setting
R is allowed to be singular. Eq. (5) along with the additional
condition

ker R ⊆ ker(S + X B), (7)

is usually referred to as constrained generalized continuous algebraic
Riccati equation, and is denoted by CGCARE(Σ). Observe that from
(1) we have ker R ⊆ ker S, which implies that (7) is equivalent to
ker R ⊆ ker(X B).

The following notation is used throughout the paper. We
denote by G def

= Im − RĎR the orthogonal projector that projects
onto ker R. Moreover, we consider a non-singular matrix T =

[T1 | T2]where imT1 = imR and imT2 = imG, and we define

B1
def
= B T1 and B2

def
= B T2. Finally, to any X = XT

∈ Rn×n we
associate the matrices

QX
def
= Q + ATX + X A, SX

def
= S + X B, (8)

KX
def
= RĎ (ST + BT X) = RĎ STX , AX

def
= A − B KX , (9)

ΠX
def
=


QX SX
STX R


. (10)

The CGCARE(Σ) is strictly connected to the LMI

ΠX ≥ 0. (11)

Indeed, by taking the generalized Schur complement of R in ΠX , is
easy to see that (11) is equivalent to the constrained generalized
continuous algebraic Riccati inequality CGCARI(Σ)

X A + AT X − (S + X B) RĎ (ST + BTX) + Q ≥ 0,
ker R ⊆ ker(S + X B)

(12)

and the symmetric solutions of CGCARE(Σ) are indeed the
solutions of LMI (11) for which the rank of ΠX is minimum.

2. Main result

The main result of this paper is the following theorem, whose
proof will be developed in several steps in the sequel.

Theorem 1. The following statements are equivalent:

(A) For every x0 ∈ Rn, Problem 1 has a solution;
(B) There exists a symmetric and positive semidefinite solution of

CGCARE(Σ);
(C) There exists a symmetric solution of CGCARE(Σ), and for each

x0 ∈ Rn, there exists u0(t) such that J∞(x0, u0) is finite;
(D) For any factorization (2), the subspaces S ⋆ and R⋆ of the

quadruple (A, B, C,D) coincide, and for each initial state x0 ∈ Rn,
there exists u0(t) such that J∞(x0, u0) is finite.

If any of these conditions holds an optimal solution can be obtained by
static state feedback and is therefore in C∞[0, ∞).

Remark 1. Existence, for each x0, of a control function u0(t) such
that J∞(x0, u0) is finite is a very natural condition. Its testability,
however, is not obvious. It has been shown in [12] that such
condition is equivalent to the following neat and easily testable
geometric condition:

V ⋆
+ R(A, B) + Xstab = Rn,

where V ⋆ is the largest output-nulling subspace of the quadruple
(A, B, C,D), R(A, B) is the reachable subspace (i.e., the smallest
A-invariant subspace containing the range of B), and Xstab is the
A-invariant subspace corresponding to the asymptotically stable
uncontrollable eigenvalues of A (so that, in other words, the sum
R(A, B) + Xstab is the stabilizable subspace of the pair (A, B)).



Download English Version:

https://daneshyari.com/en/article/756036

Download Persian Version:

https://daneshyari.com/article/756036

Daneshyari.com

https://daneshyari.com/en/article/756036
https://daneshyari.com/article/756036
https://daneshyari.com

