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a b s t r a c t

This paper discusses generalized controllers for distance-based rigid formation shape stabilization and
aims to provide a unified approach for the convergence analysis. We consider two types of formation
control systems according to different characterizations of target formations: minimally rigid target
formation and non-minimally rigid target formation. For the former case, we firstly prove the local
exponential stability for rigid formation systems when using a general form of shape controllers with
certain properties. From this viewpoint, different formation controllers proposed in previous literature
can be included in a unified framework. We then extend the result to the case that the target formation is
non-minimally rigid, and show that exponential stability of the formation system is still guaranteed with
generalized controllers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Formation control of networked multi-agent systems has re-
ceived considerable attention in recent years due to its extensive
applications. One problem of extensive interest is formation shape
control, i.e. on designing controllers to achieve or maintain a geo-
metrical shape for the formation Oh et al. [1]. As reviewed in [1],
the existing results on formation control can be characterized
into position-, displacement-, and distance-based control strate-
gies according to different types of sensed and controlled variables.
Among these formation control strategies, distance-based forma-
tion control receives particular interest as it allows reduced re-
quirement on the sensing capability for individual agent compared
to the other two strategies. Thus, this paper focuses on distance-
based formation control. In particular, we confine our attention
in this paper to undirected rigid formations, while relevant discus-
sions on directed formation control can be found in e.g. [2].

With underpinnings from rigid graph theory, it has been estab-
lished that the formation shape can be achieved by controlling a
certain set of inter-agent distances Olfati-Saber and Murray [3];
Anderson et al. [4]; Krick et al. [5]. In the rigid formation sta-
bilization problem, one typical controller that has been studied
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extensively in the literature takes the following form (see e.g. [5]):

ṗi =


j∈Ni

(pj − pi)(∥pj − pi∥2
− d2ij) (1)

where the definitions underpinning the notationwill become clear
in later sections. The above controller (1), which is derived from a
well-defined potential function, serves as a standard control law
for stabilizing rigid formations. The dynamics of the formation
control system (1) have been investigated in several succeeding
papers, e.g. [6–8]. We mention that alternative kinds of formation
controllers other than the one in (1) are also available, which have
been reported sparsely in the literature (see e.g. [9–12]).

The main objective of this paper is to analyze general
forms of formation controllers to stabilize rigid shapes. The
main contributions of this paper include a unified approach to
discuss the convergence and controller performance of generalized
formation controllers, and the associated exponential stability
of general formation systems when certain properties of the
potential function are satisfied. We show that for a large family
of formation control systems which generalizes most existing
formation controllers in the literature, the exponential stability
of the distance error system can be guaranteed (for a list of
such controllers, see Section 3.1). As is well-known in the control
field, exponential stability has the robust property against small
perturbations Khalil [13]. Such robust property has been employed
in recent papers Mou et al. [14]; Sun et al. [15]; Garcia de Marina
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et al. [16] to study the behavior of rigid undirected formations
when there are mismatches or discrepancies between neighbor
agents’ distance measurements. Exponential stability enables that
the desired equilibrium of the derived distance error system under
controller (1) is still exponentially stable with small distance
perturbations. Note that in the analysis of the formation robustness
issue in [14–16], the formation control system is limited to the
case of the controller in (1). To this end, this paper shows that
formation distance error systems with generalized controllers,
which includemany special forms of formation controllers studied
in the literature, also inherit this robustness property as a
consequence of the exponential stability.

In this paper, we first consider formation stabilization control
when the target formation is minimally rigid, which is a common
assumption in the literature. We list several requirements of the
potential and gradient functions associated with the distributed
control for each agent which render an exponential convergence
of the formation system. We give an explicit lower bound of
the convergence rate, and also discuss several properties of the
generalized formation control systems. By deriving a reduced
distance error system via the decomposition principle of a rigid
framework, we then extend the analysis from the minimally rigid
case to the non-minimally rigid case (motivated by the analysis
in [14,17]), and further prove that the exponential convergence still
holds for non-minimally rigid formation control when generalized
formation controllers are applied.

A preliminary version of this paper has been presented in [18].
The extensions of this paper compared to Sun et al. [18] include
complete proofs for all the key results which were omitted in [18],
detailed discussions on certain properties of generalized formation
controllers, new simulation results, and especially, a new section to
discuss convergence property for non-minimally rigid formations.

The rest of this paper is organized as follows. In Section 2, pre-
liminary concepts on graph theory and rigidity theory are intro-
duced. In Section 3, we provide detailed analysis on generalized
controllers and prove the exponential stability property for min-
imally rigid formations. Section 4 discusses exponential conver-
gence for formation control systems when the target formation is
non-minimally rigid. In Section 5, two sets of simulation examples
are provided to demonstrate the controller performance. Finally,
Section 6 concludes this paper.

2. Basic concepts on graph and rigidity theory

Consider an undirected graph with m edges and n vertices,
denoted by G = (V, E) with vertex set V = {1, 2, . . . , n} and
edge set E ⊂ V × V . The neighbor set Ni of node i is defined
as Ni := {j ∈ V : (i, j) ∈ E}. The matrix relating the nodes
to the edges is called the incidence matrix H = {hij} ∈ Rm×n,
whose entries are defined as (with arbitrary edge orientations for
the undirected formations considered here)

hij =

 1, the ith edge sinks at node j
−1, the ith edge leaves node j
0, otherwise.

For a connected undirected graph, one has ker(H) = span{1n}.
Note that for a rigid formation modeled by an undirected graph
considered in this paper, the orientation of each edge for writing
the incidence matrix can be defined arbitrarily and the stability
analysis in the next sections remains unchanged.

Let pi ∈ Rd where d = {2, 3} denote a point that is assigned to
i ∈ V . The stacked vector p = [pT1, p

T
2, . . . , p

T
n]

T
∈ Rdn represents

the realization of G in Rd. The pair (G, p) is said to be a framework
of G in Rd. By introducing the matrix H̄ := H ⊗ Id ∈ Rdm×dn, one

can construct the relative position vector as an image of H̄ from the
position vector p:

z = H̄p (2)

where z = [zT1 , z
T
2 , . . . , z

T
m]

T
∈ Rdm, with zk ∈ Rd being the

relative position vector for the vertex pair defined by the kth edge.
Using the same ordering of the edge set E as in the definition

of H , the rigidity function rG(p) : Rdn
→ Rm associated with the

framework (G, p) is given as:

rG(p) =
1
2


· · · , ∥pi − pj∥2, . . .

T
, (i, j) ∈ E (3)

where the norm is the standard Euclidean norm, and the kth
component in rG(p), ∥pi − pj∥2, corresponds to the squared length
of the relative position vector zk which connects the vertices i and j.

The rigidity of frameworks is then defined as follows.

Definition 1 (Asimow and Roth [19]). A framework (G, p) is rigid in
Rd if there exists a neighborhood U of p such that r−1

G (rG(p))∩U =

r−1
K (rK(p)) ∩ U where K is the complete graph with the same
vertices as G.

In the following, the set of all frameworks (G, p) which satisfy
the distance constraints is referred to as the set of target formations.
Let (dkij) denote the desired distance of edge k in the target
formation which links agent i and j. We further define

ekij = ∥pi − pj∥2
− (dkij)

2 (4)

to denote the squared distance error for edge k. Note we may use
ek and dk occasionally for notational convenience if no confusion
is expected. Also in the context of formation control under
discussions, the term framework will be occasionally referred to
as formation realized by a set of n agents. Thus we may also
use the two terms, framework and formation interchangeably if
no confusion is caused. Define the distance error vector as e =

[e1, e2, . . . , em]
T .

One useful tool to characterize the rigidity property of a
framework is the rigidity matrix R ∈ Rm×dn, which is defined as

R(p) =
∂rG(p)
∂p

. (5)

It is not difficult to see that the row of the rigidity matrix R
corresponding to {(i, j) ∈ E} takes the following form

[01×d, . . . , (pi − pj)T , . . . , 01×d, . . . , (pj − pi)T , . . . , 01×d]. (6)

Each edge gives rise to a row of R, and, if an edge links vertices i and
j, then the nonzero entries of the corresponding row of R are in the
columns from di − (d − 1) to di and from dj − (d − 1) to dj.

Eq. (2) shows that the relative position vector lies in the imageof
H̄ . Thus one can redefine the rigidity function, gG(z) : Im(H̄) → Rm

as gG(z) =
1
2


∥z1∥2, ∥z2∥2, . . . , ∥zm∥

2
T . From (2) and (5), one can

obtain the following simple form for the rigidity matrix

R(p) =
∂rG(p)
∂p

=
∂gG(z)
∂z

∂z
∂p

= ZT H̄ (7)

where Z = diag{z1, z2, . . . , zm}. It is obvious that the entries of
R(p) are also functions of z, and we will also write it as R(z). The
rigidity matrix will be used to determine the infinitesimal rigidity
of the framework, as shown in the following theorem.

Theorem 1 (Hendrickson [20]). Consider a framework (G, p) in d-
dimensional space with n ≥ d vertices and m edges. It is infinitesi-
mally rigid if and only if

rank(R(p)) = dn − d(d + 1)/2. (8)



Download English Version:

https://daneshyari.com/en/article/756039

Download Persian Version:

https://daneshyari.com/article/756039

Daneshyari.com

https://daneshyari.com/en/article/756039
https://daneshyari.com/article/756039
https://daneshyari.com

