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a b s t r a c t

Invariance of a subset of the state space with respect to a control system on an arbitrary time scale
is studied. This includes in particular continuous-time and discrete-time systems. The invariance is
characterized with the aid of natural operators associated to the system: shifts and skew derivations.
For different time scales the criteria take different forms. Then for polynomial systems algebraic
criteria of invariance based on Positivstellensatz from real algebraic geometry are developed. A relation
between invariance and monotonicity is exhibited and the results on invariance are used to characterize
monotonicity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Invariance of a subset of the state space with respect to the
dynamics of a control system is a crucial property in many areas
of control theory and practice. For example, a system is positive, if
the positive cone of the state space is preserved by the system’s
dynamics. It is customary to extend the notion of positivity to
systems that preserve some other cone with good properties,
not necessarily the positive cone. There is also a simple relation
between monotonicity of the system and invariance. The system
is monotone if its dynamics preserves a partial order defined on
the state space. The partial order is often introduced with the aid
of a cone. Angeli and Sontag [1] preferred to define the order in a
more general way, replacing a cone by an arbitrary subset of the
product of the state space with itself that yields a partial order.
We go one step further, following a suggestion in [1], and consider
monotonicity with respect to a relation that is not necessarily a
partial order. We study monotonicity only with respect to states
and not with respect to states and controls as is done in [1]. Thus
we are closer to the original concepts of Smith [2], where only
dynamical systems without control were studied. This is caused
by our choice of not imposing any structure on the set of control
values, as was done e.g. in our studies of positive realizations [3].

The goal of the paper is to find nice characterizations of
invariance and monotonicity for both continuous- and discrete-
time systems. The language of calculus on time scales allows
for doing this simultaneously for the two classes. Moreover, we

E-mail address: z.bartosiewicz@pb.edu.pl.

are able to accommodate systems on non-uniform discrete time
domains, studied e.g. in [4,5], and systems with a mixed time.
The theory of control systems on time scales is quite developed
now, including linear and nonlinear systems (see e.g. [6,7]). Similar
study concerning monotonicity of systems on time scales has
been done in [8], but with a more traditional concept of partial
order based on cones, which have also been used to express
the criteria of invariance. The common feature of [8] and this
paper is that the nature of time, discrete or continuous, strongly
influences the criterion of invariance, so in the general case we
must have two conditions, of which only one is triggered for a
particular instance of time. We express these conditions using two
fundamental operators acting on real functions defined on the
state space: the skew derivation and the shift. They were used
before in [3] for formulating the conditions of positive realizability.
When we choose the case of continuous-time systems, we get a
known characterization, but expressed in a different language. The
usual formulation relies on the notion of tangent cone [1]. The
discrete-time case is more straightforward. But since the discrete-
time system is described by a delta differential equation and not
by the usual shift equation, the characterization of invariance or
monotonicity takes a different form.

In the last section we retreat to a more structured class of poly-
nomial systems. Such a system is described by a family of poly-
nomial maps (vector fields) parameterized by control values, and
the set whose invariance is examined is defined by polynomial in-
equalities, i.e. it is semialgebraic. This allows to use well developed
machinery of real algebraic geometry (see e.g. [9]). In particular
we use a characterization of functions that are nonnegative on a
semialgebraic set, known as Positivstellensatz [10,11]. Such char-
acterization has been extended to real analytic geometry [12], so
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one can try to generalize the algebraic criteria of invariance and
monotonicity for polynomial systems presented in this paper to
the real analytic case. The language and results of real analytic ge-
ometry, especially real analyticNullstellensatz, were used in [13,14]
to develop algebraic criteria of local observability. The results of
this section are neweven for continuous-time or discrete-time sys-
tems. However one has to remember that they are restricted to the
polynomial case.

Monotone systems are used as models of many concrete
systems that appear in various areas of science and technology.
Examples of such systems can be found e.g. in [2]. Two important
classes of competitive and cooperative systems are common in
economics, social sciences andbiology. They also appear in robotics
to model swarms of robots [15].

2. Preliminaries

By R we shall denote the set of all real numbers, by Z the
set of integers, and by N the set of natural numbers (without 0).
R+ will mean the set of nonnegative real numbers, Z+ the set of
nonnegative integers, i.e. N ∪ {0}, and Rk

+
the set of all column

vectors in Rk with nonnegative components.
By xi : Rn

→ R we denote the coordinate function: xi(x) = xi
for x = (x1, . . . , xn). By C1(Rn) we shall denote the algebra of
all real-valued functions defined on Rn with continuous partial
derivatives. If ϕ ∈ C1(Rn), then we say that ϕ is of class C1. The
same concerns a map g : Rn

→ Rk whose components belong
to C1(Rn). The algebra of real polynomial functions on Rn will be
denoted by R[x1, . . . , xn].

Calculus on time scales is a generalization of the standard
differential calculus and the calculus of finite differences. For
convenience of the reader we recall here the basic definitions and
facts used in this paper. More information can be found e.g. in [16].

A time scale T is an arbitrary nonempty closed subset of R. In
particular T = R, T = aZ for a > 0 and T = qN

:= {qk, k ∈ N}

for q > 1 are time scales. In the whole paper we consider on T
the relative topology induced from R. If t0, t1 ∈ R, then [t0, t1]T
denotes the intersection of the ordinary closed interval with T.
Similar notation is used for open, half-open or infinite intervals.

The forward jump operator σ : T → T is defined by σ(t) :=

inf{s ∈ T : s > t} if t ≠ supT and σ(supT) := supT when supT
is finite; the backward jump operator ρ : T → T is defined by
ρ(t) := sup{s ∈ T : s < t} if t ≠ infT and ρ(infT) := infT when
infT is finite; the forward graininess function µ : T → [0,∞) is
defined by µ(t) := σ(t)− t .

If σ(t) > t , then t is called right-scattered, while if ρ(t) < t , it
is called left-scattered. If t < supT and σ(t) = t , then t is called
right-dense. If t > infT and ρ(t) = t , then t is left-dense.

In the whole paper we will assume that T is forward infinite,
i.e. for every t ∈ T there are infinitely many points in T that are
greater than t .

Let γ : T → R and t ∈ T. The delta derivative of γ at t , denoted
by γ∆(t), is the real numberwith the property that given any ε > 0
there is a neighborhood U = (t − δ, t + δ)T such that

|(γ (σ (t))− γ (s))− γ∆(t)(σ (t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . If γ∆(t) exists, thenwe say that γ is delta differentiable
at t . Moreover, we say that γ is delta differentiable on T, provided
γ∆(t) exists for all t ∈ T. A function γ : T → Rn is delta
differentiable if all its components γi are delta differentiable. Then
γ∆(t) := (γ∆1 (t), . . . , γ

∆
n (t))

T .

Example 2.1. If T = R, then γ∆(t) = γ̇ (t)—the ordinary
derivative. If T = aZ, then γ∆(t) =

γ (t+a)−γ (t)
a . If T = qN for

q > 1, then γ∆(t) =
γ (qt)−γ (t)
(q−1)t .

For a function γ : T → R let γ σ := γ ◦ σ .

Proposition 2.2. If γ : T → R is delta differentiable, then γ σ =

γ + µγ∆.

Here is the chain rule on time scales.

Proposition 2.3. Let n ∈ N, ϕ : Rn
→ R be of class C1 and

γ : T → Rn be delta differentiable on T. Then

(ϕ ◦ γ )∆(t) =

 1

0
ϕ′(γ (t)+ sµ(t)γ∆(t))ds γ∆(t),

where ϕ′
:= (

∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn
) is the gradient of ϕ.

Corollary 2.4. For delta differentiable functions γ1 and γ2

(γ1γ2)
∆

= γ σ1 γ
∆
2 + γ∆1 γ2 = γ1γ

∆
2 + γ∆1 γ

σ
2

= γ1γ
∆
2 + γ∆1 γ2 + µγ∆1 γ

∆
2 .

Let now H : Rn
× T → Rn. Consider the delta differential

equation

x∆(t) = H(x(t), t). (1)

A solution to (1) is a function x defined on some interval [a, b)T ⊆ T
and satisfying (1). If H is continuous and is of class C1 with respect
to x (the first variable), then for every initial condition x(t0) = x0
there exists a unique forward solution defined on some interval
[t0, t1)T, where t1 ∈ T and t1 > t0 [16].

Now we recall the main tools that have been used to study
positive realizations in [3,17]: skew derivations of algebras. They
will be also useful in our study of forward invariance and
monotonicity.

Let h : Rn
→ Rn be of class C1 and let t ∈ T. As in [3] let us

define Γ t
h : C1(Rn) → C0(Rn) by

Γ t
h (ϕ)(x) :=

 1

0
ϕ′(x + sµ(t)h(x))ds h(x), (2)

where ϕ′ is the gradient of ϕ.

Remark 2.5. If µ(t) > 0 then

Γ t
h (ϕ)(x) =

1
µ(t)

(ϕ(x + µ(t)h(x))− ϕ(x)).

For µ(t) = 0 we obtain Γ t
h (ϕ)(x) = ϕ′(x)h(x), so Γ t

h (ϕ) is then
equal to Lh(ϕ) – the Lie derivative of the function ϕ with respect to
the vector field h.

Example 2.6. Let ϕ = xi. Then for any time scale T and for any
t ∈ T

Γ t
h (ϕ)(x) = hi(x).

Let h : Rn
→ Rn be of class C1 and let t ∈ T. Define σ t

h :

C1(Rn) → C1(Rn) by

σ t
h(ϕ)(x) := ϕ(x + µ(t)h(x)).

We will call it a shift.
Observe that themap σ t

h is a homomorphism of the ring C1(Rn).
For µ(t) = 0 this map is the identity map.

We have natural relations between Γ t
h and σ t

h .

Proposition 2.7 ([3]).
1. For ϕ,ψ ∈ C1(Rn), Γ t

h (ϕψ) = Γ t
h (ϕ)ψ + σ t

h(ϕ)Γ
t
h (ψ) =

Γ t
h (ϕ)σ

t
h(ψ)+ ϕΓ t

h (ψ).
2. For ϕ ∈ C1(Rn), σ t

h(ϕ) = ϕ + µ(t)Γ t
h (ϕ).
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