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a b s t r a c t

In this paper, we consider three different notions of recurrence, chain recurrence, strong chain recurrence
and generalized recurrence, where the generalized recurrence is introduced by Auslander (1964) and the
strong chain recurrence is derived from the idea of a strong chain defined by Easton (1978).We prove that
for a quasi-gradient flow in a compact metric space, these three recurrences are equivalent. Finally, we
establish an invariance principle, i.e., the ω-limit set of a precompact orbit is contained in the generalized
recurrent component of ’zero derivative’ set of a Lyapunov function.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The ultimate aim of one studying a dynamical system from a
topological point of view is to understand its phase portrait or or-
bit structure. Frequently, the first step is to describe the eventual
behavior of the orbits, that is to determine the limit sets. LaSalle
invariance principle is one of the most important tools for con-
vergence analysis, see [1]. In the literature, there are numberless
extensions of this elegant principle for variant applications to dy-
namical systems in applied sciences such as electrical andmechan-
ical engineering, biology, and physics. For instance, itwas extended
to infinite dimensional systems [2,3], non-autonomous differen-
tial equations [4,5] and differential inclusions [6,7]. By the invari-
ance principle, system stability can be investigated by employing
a proper Lyapunov function with semi-negative time derivative
along orbits, which implies that theω-limit set of bounded orbits is
a compact subset of the largest invariant set in the ‘zero derivative’
set.

Of course, the largest invariant set contained in the ‘zero
derivative’ set of a Lyapunov function may be large, thus it is hard
to locate anω-limit set. It is a challenging problem to determine an
ω-limit set in the ‘zero derivative’ setmore accurately. An excellent
result in this direction was concluded by Helmke in [8], i.e., an ω-
limit set is contained in an internally chain transitive component in
the largest invariant set. However, in some cases, a chain transitive
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component is still too large. For example, consider the flow in the
plane defined by ẋ1 = x21 + x22 − 1, ẋ2 = 0, which was presented
by Nitecki in [9]. Clearly, the chain recurrent set (the unit disc) has
a positive measure and the generalized (Auslander) recurrent set
(the unit circle) has measure zero. Since a limit set is generalized
recurrent, it is natural to determine theω-limit set in a component
of the generalized recurrent set, which is one of our main goals in
this paper.

A point exhibits some sort of recurrent behavior when the
dynamical system returns the point to itself, or to a neighborhood
of itself, in a particular way. Chain recurrence is one type
of recurrence with errors allowed along the orbit, which was
introduced by Conley in [10]. To give a criterion of Lipschitz
ergodicity, Easton [11] introduced the concept of a strong chain,
which demands a ‘sum error’ along the orbit. In a natural way,
strong chains lead to a corresponding notion of strong chain
recurrence. In this paper, we deal with chain recurrence, strong
chain recurrence and generalized recurrence. For the elementary
properties of these recurrent motions, we refer to [10–15].

This paper is organized as follows. In the next section, we show
that if a dynamical system defined in a compact metric space
is quasi-gradient, i.e., the minimal sets are isolated, then chain
recurrence is equivalent to strong chain recurrence. In Section 3,
we first recall the generalized recurrence established by Auslander
in [13]. If a point is generalized recurrent, then it is strong
chain recurrent. Further, we show that for a quasi-gradient flow,
generalized recurrence is equivalent to chain recurrence, although
these two notions seem completely different by their definitions.
Finally, in Section 4, we use the generalized recurrence to present
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a strong LaSalle invariance principle. We prove that the ω-limit
set of a precompact orbit is contained in a generalized recurrent
component in the ‘zero derivative’ set of a Lyapunov function.

2. Chain recurrence

In this section, X denotes a compact metric space with metric
d. For a set A ⊂ X , A denotes the closure of A. Let B(x, r) = {y ∈

X : d(x, y) < r} be the open ball with center x and radius r > 0. If
A ⊂ X and r > 0, the r-neighborhood of A is denoted by N(A, r) =

{z ∈ X : d(z, A) < r}, where d(z, A) = inf{d(z, p) : p ∈ A}. Let R
be the real line, and R+ the subset of R consisting of nonnegative
real numbers.

A dynamical system or continuous flow on X is a continuous
map π : X × R → X satisfying (i) π(x, 0) = x for all x ∈ X and
(ii) π(π(x, t), s) = π(x, t + s) for all x ∈ X and t, s ∈ R. For
brevity, we write x · t in place of π(x, t), then axiom (ii) reads
(x · t) · s = x · (t + s). Similarly, let A · J = {x · t : x ∈ A, t ∈ J} for
A ⊂ X and J ⊂ R, also write x · J for {x} · J . In particular, if x ∈ X ,
the orbit of x is γ (x) = x · R and the positive semi-orbits of x is
γ +(x) = x · R+. A set Y in X is invariant if γ (x) ⊂ Y for all x ∈ Y .
A set M ⊂ X is called minimal, if it is nonempty, closed, invariant
and no proper subset ofM has these properties.

The ω-limit set ω(x) of a point x ∈ X is defined to be the set
t≥0 x · [t, +∞), equivalently y ∈ ω(x) means that there is a

sequence {ti} with ti → +∞ such that x · ti → y as i → +∞.
Similarly, the α-limit set α(x) of x ∈ X is the set


t≤0 x · (−∞, t],

The first prolongational set and first prolongational limit set are
defined, respectively, by D1(x) = {y ∈ X: there are two sequences
{xn} ⊂ X and {tn} ⊂ R+ such that xn → x and xn · tn → y}
and J1(x) = {y ∈ X: there are two sequences {xn} ⊂ X and
{tn} ⊂ R+ such that xn → x, tn → +∞ and xn · tn → y}. Note that
D1(x) = γ +(x) ∪ J1(x) holds.

The notion of chain recurrence, introduced by Conley [10], is a
way of getting at the recurrence properties of a dynamical system.
It has remarkable connections to the structure of attractors. For
two points x, y in X and two positive numbers ϵ, t > 0, an (ϵ, t)-
chain from x to y means a collection {x = x1, x2, . . . , xn+1 = y :

t1, t2, . . . , tn} such that ti ≥ t and d(xi · ti, xi+1) < ϵ for 1 ≤ i ≤ n.
A point x ∈ X is chain recurrent if for all ϵ, t > 0 there exists an
(ϵ, t)-chain from x to itself. The chain recurrent set C in X is the set
of all chain recurrent points. Note that C is closed and invariant.
An invariant closed set Y ⊂ X is chain transitive if for all x, y ∈ Y
and all ϵ, t > 0 there exists an (ϵ, t)-chain from x to y. Clearly, if
an invariant closed set Y is chain transitive, then each point in Y
is chain recurrent, i.e., Y ⊂ C. Also, every component of the chain
recurrent set C is chain transitive.

Since X is compact, the chain recurrent component has the
restriction property, i.e., (ϵ, t)-chains connecting points in C can be
chosen to lie in C, see [14, Theorem 3.6D] or [16, p. 429].

Definition 2.1. A chain transitive set D is reducible if there exists
a nonempty invariant closed proper subset of D that is also chain
transitive. A chain transitive set is said to be irreducible if it is not
reducible.

Clearly, rest points and periodic orbits are irreducible chain
transitive sets. Consider the differential equation θ̇ = sin2 θ in the
angular coordinate on S1 (the unit circle in the plane R2), it is easy
to see that S1 is a reducible chain transitive set. By the definition,
any two different irreducible chain transitive sets are disjoint.

Property 2.2. A subset D of X is an irreducible chain transitive set if
and only if D is a minimal set.

Proof. Let D be an irreducible chain transitive set. For an x ∈ D,
if ω(x) ≠ D, then ω(x) is a nonempty invariant closed proper
subset of D, which is also chain transitive. It is contradictory to
that D is irreducible. Hence, we have ω(x) = D for any x ∈ D, it
means that D is minimal. Conversely, since a minimal set is chain
transitive and has no nonempty invariant closed proper subsets, it
is an irreducible chain transitive set. �

To give a criterion of Lipschitz ergodicity, Easton [11] intro-
duced the concept of a strong chain. For two points x, y in X and
two positive numbers ϵ, t , the collection {x = x1, x2, . . . , xn+1 =

y : t1, t2, . . . , tn} is said to be a strong (ϵ, t)-chain from x to y ifn
i=1 d(xi · ti, xi+1) < ϵ and ti ≥ t for 1 ≤ i ≤ n. A point x ∈ X

is strong chain recurrent if for all ϵ, t > 0 there exists a strong (ϵ,
t)-chain from x to x. The strong chain recurrent set S in X is the set of
all strong chain recurrent points. Clearly, S is closed and invariant.
An invariant closed set Y ⊂ X is strong chain transitive if for all x,
y ∈ Y and all ϵ, t > 0 there exists a strong (ϵ, t)-chain from x to y.

Note that the strong chain recurrent set does not have the
restriction property. Consider the flow π corresponding to the
system of differential equations ṙ = r(1 − r)3, θ̇ = (1 − r)2 in
polar coordinates on the unit disc D2

= {(x1, x2) : x21 + x22 ≤ 1} in
the plane R2. Then, S1 is strong chain recurrent under π , however
it is not strong chain recurrent under π |S1 .

If a point is strong chain recurrent, then it is chain recurrent,
this means S ⊂ C. However, the converse is not true. Consider
a system presented by Conley in [14] as follows. Let X denote the
unit square in the plane, and the flow is generated by the vector
field ẋ = 0, ẏ = −xy(1− x)(1− y). It is easy to see that C = X and
S is the boundary of the square. Of course, a minimal set is strong
chain recurrent, but the converse is not true.

Definition 2.3. An irreducible chain transitive set D is isolated, if
there exists an open neighborhood U of D such that U contains no
points of other irreducible chain transitive sets. The flowπ is called
quasi-gradient if every irreducible chain transitive set is isolated.

If a flow π is quasi-gradient, it has some regularity, e.g., all the
rest points and periodic orbits are isolated. Actually, we have the
interesting result as follows.

Theorem 2.4. If X is compact and π is quasi-gradient, then every
chain recurrent point is strong chain recurrent, i.e., C = S.

Proof. Let x ∈ D ⊂ C, where D is a component of C and is
chain transitive, see [14]. Recall that the chain recurrent set has
the restriction property [14, Theorem 3.6D]. If we let π |D be the
sub-flow on the connected set D, then D is also chain transitive
for π |D. Define T = {y ∈ D: for any ϵ, t > 0 there exists a
strong (ϵ, t)-chain inD from x to y}, which is an invariant closed set
and ω(x) ⊂ T . Since different irreducible chain transitive sets are
disjoint and π is quasi-gradient, it follows from the compactness
of X that there exist only a finite number of irreducible chain
transitive sets for π . To see this, let (2X ,Hd) be the hyperspace
of X , where 2X

= {A : A is a nonempty closed subset of X} and
Hd is the Hausdorff metric. It is well known that 2X is a compact
metric space, see [17, Chap. 4]. If there are an infinite number
of irreducible chain transitive sets {Di} in X , then {Di} has an
accumulation point D∗ in 2X . The set D∗ is a nonempty closed
invariant set, and hence contains a minimal subset D′, which is an
irreducible chain transitive set by Property 2.2. Since π is quasi-
gradient, there exists a neighborhood V of D′ such that V contains
no other points of irreducible chain transitive sets. This contradicts
the fact that D∗ is an accumulation point of {Di}. Consequently, if
D \ T ≠ ∅, we take p ∈ D \ T such that d(p, T ) = δ > 0 and
there exist no any irreducible chain transitive sets in the bounded
set U = N(T , δ) \ T . Now, if there exists a sequence {xn} in U such
that d(xn, T ) → 0 and ω(xn) ∩ (D \ N(T , δ)) ≠ ∅. Without loss of
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