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a b s t r a c t

We present a frequency-domain subsystem identification algorithm that identifies unknown feedback
and feedforward subsystems that are interconnected with a known subsystem. This method requires
only accessible input and output measurements, applies to linear time-invariant subsystems, and uses
a candidate-pool approach to ensure asymptotic stability of the identified closed-loop transfer function.
We analyze the algorithm in the cases of noiseless and noisy data. The main analytic result of this paper
shows that the coefficients of the identified feedback and feedforward transfer functions are arbitrarily
close to the true coefficients if the data noise is sufficiently small and the candidate pool is sufficiently
dense. This subsystem identification approachhas application tomodeling the control behavior of humans
interacting with and receiving feedback from a dynamic system. We apply the algorithm to data from a
human-in-the-loop experiment to model a human’s control behavior.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Humans learn to interactwithmany complex dynamic systems.
For example, humans learn to drive cars, fly planes, and ride
unicycles. Moreover, humans learn to control all of these systems
with virtually no a priori information. The control strategies that
humans learn and the approaches used to learn them are currently
unknown. The internal model hypothesis proposes that humans
construct models of their body and the physical world, and these
models are used for control [1,2]. Although studies (e.g., [3–10])
provide evidence in support of the internal model hypothesis, this
existing evidence is not conclusive [11].

Consider a scenario where a human interacts with a dynamic
system by using feedback yt and external information rt (e.g., a
command) to generate a control ut as shown in Fig. 1. In this
scenario, the human is an unknown subsystem, which can include
both feedback and feedforward. Modeling the human’s control
strategy can be viewed as a subsystem identification (SSID)
problem, where rt and yt are measured and the dynamic system
with which the human interacts is assumed to be known. The
internal signals that the humanuses to constructut are inaccessible
(i.e., unmeasurable). For example, if ut is the sum of feedback and
feedforward terms, then these individual terms are inaccessible.
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Existing methods for SSID are given in [12–24]. Specifically,
[12–14] present methods for static subsystems, while [15–24]
present methods for dynamic subsystems. In the dynamic SSID lit-
erature, the approaches in [15–19] are restricted to open-loop SSID,
that is, identification of subsystems interconnected without feed-
back. We note that [16,19] use open-loop SSID to model the dy-
namics of human subsystems. Specifically, [16] identifies a transfer
function that models a human’s precision grip force dynamics,
whereas [19] identifies two transfer functions that together model
a human’s oculomotor subsystem.

In contrast to [12–19], we focus on dynamic closed-loop SSID,
that is, identification of dynamic subsystems with feedback. Exist-
ing dynamic closed-loop SSID methods include [20–24]. In partic-
ular, [20] identifies a transfer function that models the behavior
of a human subject interacting in feedback with a mechanical sys-
tem. However, the method in [20] applies to systems with feed-
back only, that is, systems without feedforward. We note that the
methods in [20–24] are time-domain techniques and yield identi-
fied models that may not result in an asymptotically stable closed-
loop system.

This paper presents a new closed-loop SSID technique that: (i)
identifies feedback and feedforward subsystems, and (ii) ensures
asymptotic stability of the identified closed-loop transfer function.
A closed-loop SSID method that addresses both (i) and (ii) is a new
contribution of this paper. The method relies on a candidate-pool
approach to accomplish (ii). Another contribution of this paper is
an analysis of the properties of the SSID algorithm in the cases
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Fig. 1. Modeling a human’s control strategy can be viewed as an SSID problem,
where rt and yt are measured and the dynamic system with which the human
interacts is assumed to be known.

Fig. 2. The input r and output y of this linear time-invariant system are measured,
but all internal signals are inaccessible.

of noiseless and noisy data. Our main analytic result shows that
the coefficients of the identified feedback and feedforward transfer
functions are arbitrarily close to the true coefficients if the data
noise is sufficiently small and the candidate pool is sufficiently
dense.

Characteristics (i) and (ii) of the SSID algorithm are motivated
by the application to modeling human control behavior. First,
humans generally use both anticipatory (feedforward) and reactive
(feedback) control [1,2], which motivates (i). Second, if a human-
in-the-loop system has a bounded output, then it is desirable to
identify subsystems that result in an asymptotically stable closed-
loop transfer function, thus motivating (ii). In addition, human
control behavior is band limited; specifically, humans cannot
produce motion with arbitrarily high frequency. Thus, we are
interested in identifying models over a limited frequency range,
which motivates the development of a new SSID technique in the
frequency domain.

The frequency-domain SSID technique in this paper identifies
unknown feedback and feedforward subsystems that are intercon-
nected with a known subsystem, where all internal signals are as-
sumed to be inaccessible, as shown in Fig. 2. We present numerical
examples to demonstrate the properties of the SSID algorithm.We
also apply the SSID algorithm to data from an experiment designed
to model the control behavior of a human subject interacting with
a dynamic system. System identification approaches are also used
in [25–31] tomodel human control behavior. However, [25–31] do
not model both feedback and feedforward subsystems and do not
ensure stability of the identified closed-loop model. A preliminary
version of the SSID algorithm in this paper appeared in the confer-
ence proceedings [32]. However, this paper goes beyond the work
of [32] by analyzing the properties of the SSID algorithm.

2. Problem formulation

Consider the linear time-invariant system shown in Fig. 2,
where r , y, σr , and σy are the Laplace transforms of the input,
output, input noise, and output noise, respectively, and for i =

0, 1, 2,Gi : C → C is a real rational transfer function. If σr = 0
and σy = 0, then the closed-loop transfer function from r to y is
given by

G̃(s) ,
G0(s)G1(s)+ G0(s)G2(s)

1 + G0(s)G2(s)
. (1)

Next, let N be a positive integer, and define N , {1, 2, . . . ,N}.
For all k ∈ N, letωk ∈ (0,∞), whereω1 < · · · < ωN . Furthermore,

for all k ∈ N, define the closed-loop frequency response data

H(ωk) ,
y(ȷωk)

r(ȷωk)
= G̃(ȷωk)+ σ(ȷωk), (2)

where σ(s) , [G̃(s)σr(s) + σy(s)]/r(s). If σ(ȷωk) ≡ 0, then
{H(ωk)}

N
k=1 is noiseless. In contrast, if σ(ȷωk) ≢ 0, then {H(ωk)}

N
k=1

is noisy.
We present a method to identify G1 and G2 provided that G0

and {H(ωk)}
N
k=1 are known and G0 ≠ 0. In this case, the closed-

loop frequency response data {H(ωk)}
N
k=1 can be obtained from

the accessible signals r and y and does not depend on the internal
signals, which are not assumed to be measured.

For i = 0, 1, 2, Gi can be expressed as Gi(s) = Ni(s)/Di(s),
where Ni and Di are coprime, and Di is monic. The degrees of Ni
and Di are denoted by ni , degNi and di , degDi. Thus, (1) can be
expressed as

G̃(s) =
N0(s) [D2(s)N1(s)+ D1(s)N2(s)]
D1(s) [D0(s)D2(s)+ N0(s)N2(s)]

.

Wemake the following assumptions:

(A1) d1, d2, n1, and n2 are known.
(A2) d0 + d2 > n0 + n2.
(A3) N > d0 + d1 + d2 + n0 + max{n1 + d2, n2 + d1}.
(A4) If λ ∈ C and D1(λ) [D0(λ)D2(λ)+ N0(λ)N2(λ)] = 0, then

Reλ < 0.

Assumption (A1) can be replaced by the assumption that upper
bounds on d1, d2, n1, and n2 are known. However, we invoke (A1)
for clarity of the presentation. Assumption (A2) states that the
loop transfer function G0G2 is strictly proper. Assumption (A3)
implies that the number N of frequency response data points is
sufficiently large. This assumption ensures that the minimization
problem solved in the SSID has a unique solution. Assumption (A4)
implies that G̃ is asymptotically stable, that is, the poles of G̃ are in
the open-left-half complex plane.

Define d , d1 + d2 + n2 + 1, and for all nonnegative integers
j, let Γj : C → Cj+1 be given by Γj(s) , [sj sj−1

· · · s 1]T.
Consider the functions N1 : C × Rn1+1

→ C and D1,N2,D2 : C ×

Rd
→ C given by

N1(s, β) ,Γ T
n1(s)β, D1(s, φ) , sd1 + Γ T

d1−1(s)E1φ,

N2(s, φ) ,Γ T
n2(s)E2φ, D2(s, φ) , sd2 + Γ T

d2−1(s)E3φ,

where E1 , [Id1 0d1×(d2+n2+1)] ∈ Rd1×d,
E2 , [0(n2+1)×d1 In2+1 0(n2+1)×d2 ] ∈ R(n2+1)×d,
E3 , [0d2×(d1+n2+1) Id2 ] ∈ Rd2×d, β ∈ Rn1+1, and φ ∈ Rd. Next,
consider the functions G1 : C×Rn1+1

×Rd
→ C and G2 : C×Rd

→

C given by

G1(s, β, φ) ,
N1(s, β)
D1(s, φ)

, G2(s, φ) ,
N2(s, φ)
D2(s, φ)

,

which, for each β ∈ Rn1+1 and φ ∈ Rd, are real rational transfer
functions.

Our objective is to determine β and φ such that G1 and G2
approximate G1 and G2, respectively. To achieve this objective,
consider the cost function

J(β, φ) ,

N
k=1

N0(ȷωk) [D2(ȷωk, φ)N1(ȷωk, β)+ D1(ȷωk, φ)N2(ȷωk, φ)]
D1(ȷωk, φ) [D0(ȷωk)D2(ȷωk, φ)+ N0(ȷωk)N2(ȷωk, φ)]

−H(ωk)


2

, (3)

which is a measure of the difference between the closed-loop
frequency response data {H(ωk)}

N
k=1 and the closed-loop transfer
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