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a b s t r a c t

This paper studies dissipativity for switched discrete-time nonlinear systems using multiple storage
functions and multiple supply rates. A sufficient condition for dissipativity of the switched nonlinear
system is given under some switching law. Then, the result is extended to find a condition under which
a switched system is feedback equivalent to a passive switched system. Switched passivity condition
and switched l2-gain inequalities are, respectively, given, which are generalizations of the classical ones.
Furthermore, the assumption of zero dynamics having passivity is relaxed. Passivity is also shown to be
preserved under feedback interconnection.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dissipativity as one of themost important and desirable system
properties, is a very effective tool for the study of nonlinear sys-
tems. In many engineering problems, stability, tracking issues and
control synthesis are often linked to dissipative systems. A dissi-
pative system is a system for which the energy dissipated inside
the system is no more than the supplied energy from the external
source. The dissipativity is characterized by storage functions and
supply rates.

The dissipativity concept and dissipativity theory were de-
veloped by Willems [1]. The extensions of these results to the
case of affine nonlinear systems were carried out in [2–4]. Since
dissipative (passive) systems present highly desirable properties,
the dissipativity (passivity) has become one of the major ap-
proaches to the study of complex systems, which may simplify
systems analysis and control design [2]. For continuous-time non-
linear systems, the concepts of dissipativity and passivity have
been widely used to solve stability and stabilization problems
[5–7], and control synthesis with successful applications in many
systems including electronic-type and electromechanical systems
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(see, for example [8,9]). Results on dissipativity and passivity of
discrete-time nonlinear systems have also appeared. In [10–12],
Kalman–Yakubovich–Popov (KYP) conditions were extended to
discrete-time nonlinear systems. Feedback losslessness equiva-
lence and feedback passivity equivalence for discrete-time nonlin-
ear systems were investigated in [13,14], respectively.

On the other hand, since switched systems are one im-
portant and particular class of hybrid systems, the study of
switched systems has received much attention (see, for example
[15–18]). The main methodologies used in studying switched sys-
tems are multiple Lyapunov functions [19,20], (average) dwell
time [21–24] and so on. Recently, some less conservative meth-
ods have been proposed, such as general multiple Lyapunov func-
tions method [25], general (average) dwell time technique [26],
and dwell time min-switching approach [27,28] and so on.

As mentioned earlier, dissipativity (passivity) is an important
property and a powerful tool for non-switched nonlinear sys-
tems. Naturally, the dissipativity (passivity) property for hybrid
and switched systems is still expected to be useful. There are
some papers concerning dissipativity and passivity-based con-
trol problem of switched systems and hybrid systems [29–36].
For switched continuous-time systems, [32] investigated passivity
and passivity-based controller design via a common storage func-
tion. [37] proposed a notion of passivity by using multiple storage
functions. However, this passivity concept requires each storage
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function to be non-increasing on the consecutive ‘‘switched on’’
times. [38] given a framework of dissipativity theory for switched
continuous-time systems using multiple storage functions and
multiple supply rates, and considered the changes of energy not
only for the activated but also for inactivated subsystems.

However, dissipativity and passivity of switched discrete-time
systems have been rarely explored. The existing works only con-
sider switched systems with all modes or at least one mode being
dissipative (passive). The use of multiple storage functions for dif-
ferent modes of a switched linear system was proposed via piece-
wise quadratic storage functions [39]. Recently, a new concept
of decomposable dissipativity was proposed in [40]. By assuming
the dissipativity of each subsystem, only the stability conditions
were given in [40]. However, neither conditions to guarantee the
dissipativity nor control law design to achieve dissipativity were
considered. This motivates the study of this paper. On the other
hand, [41] extended the results of [40] to the case where not all
subsystems are passive, but at least one is passive, while no ex-
change of energy between the active subsystem and those inac-
tivated subsystems was considered. However, the proposed ap-
proach used in the above results cannot handle the case where
all subsystems are non-dissipative (non-passive). Another motiva-
tion of our present study comes from [38]. This paper can be seen
as a parallel result of [38] to the discrete-time counterpart. How-
ever, the extension is nontrivial due to some distinctive features of
discrete-time switched systems.

In this paper, we are interested in dissipativity (passivity) of
switched discrete-time nonlinear systems in the absence of dissi-
pativity of subsystems. On one hand, for a switched discrete-time
system which is nonlinear non-affine in the input, by designing
a proper switching rule, a sufficient condition for the system to
be dissipative is given. On the other hand, the problem of render-
ing a switched system to be passive by means of a static feedback
control law under some switching law is presented, and a condi-
tion for passification of a switched discrete-time nonlinear system
is obtained without the requirement of passivity of its zero dy-
namics. Moreover, for passivity, we localize the passivity condition
and obtain a property of invariance under feedback interconnec-
tion. More importantly, the switching signals of the two switched
systems of the interconnected switched system can be different.
Therefore, the two switched systems are allowed to be switched
asynchronously. This provides more freedom for design. For l2-
gain, we derive a local version of the Hamilton–Jacobi Inequalities
(HJIs), which is a generalization of the classical one.

2. Preliminaries

Consider the switched discrete-time nonlinear system
x(k + 1) = fσ(k)(x(k), uσ(k)(k))
y(k) = hσ(k)(x(k), uσ(k)(k)),

(1)

where k ∈ N, σ (k) is the switching signal taking values in I =

{1, 2, . . . ,M}; x(k) ∈ X ⊂ Rn is the state vector, ui(k) ∈ Ui ⊂ Rmi

is the input vector of the ith subsystem, and y(k) ∈ Y ⊂ Rm is the
output vector. X, Ui and Y are the state, input, and output spaces,
respectively. Both fi : Rn

×Rmi → Rn and hi : Rn
×Rmi → Rm are C2

functions. All considerations are restricted to an open set of X ×Ui
containing the equilibrium point (x∗, u∗

i ). We assume fi(0, 0) = 0
and hi(0, 0) = 0.
For the system (1), we make the following assumption.

Assumption 1. ∂hi(x,ui)
∂ui


(x∗, u∗

i )
≠ 0, that is, each subsystem has

local relative degree zero.

Remark 1. Assumption 1 is a common prerequisite for dissipativ-
ity study of discrete-time systems [10,13].

In this paper, we focus on the following main problems.

(a) When all subsystems are non-dissipative, how to achieve
dissipativity for the system (1) via design of a proper switching
rule.

(b) When the zero dynamics of all subsystems of the system (1)
are non-passive, how to achieve feedback passivation for a
nonlinear system affine in the control input via design of
subsystem controllers and a certain switching rule.

3. Dissipativity

This section will study the dissipativity for the system (1) by
usingmultiple storage functions andmultiple supply rates.Wewill
provide a sufficient condition for the system (1) to be dissipative
under some switching rule. First, inspired by the concept of
dissipativity for switched continuous-time systems [38], we will
present the following dissipativity definition for switched discrete-
time systems.

Definition 1. System (1) is said to be locally dissipative under
some switching signal σ(k) if there exist positive semidefinite con-
tinuous functionsVi(x), i ∈ I , called storage functions, locally com-
pletely summable functions si(y, ui), i ∈ I , called supply rates, and
locally completely summable functionsφi

r(x, y, ui, k), r, i ∈ Ir ≠ i,
called cross-supply rates, such that the following inequalities hold

1Vi(x(k)) = Vi(fi(x(k), ui(k))) − Vi(x(k))
≤ si(y(k), ui(k)), σ (k) = i, ∀x ∈ X, ui ∈ Ui (2)

1Vr(x(k)) = Vr(fi(x(k), ui(k))) − Vr(x(k))
≤ φi

r(x(k), y(k), ui(k), k),
r ≠ i, ∀x ∈ X, ui ∈ Ui. (3)

Similar to the discussion of [38], since all subsystems share the
same state variable, the energy Vr(x) of the inactive rth subsystem
is actually changing. This can be regarded as the result of imported
energy from the active ith subsystem into the inactive rth subsys-
tem. This energy is described by the cross-supply rate φi

r from the
ith subsystem to the rth subsystem and fulfils the dissipation in-
equalities (3).

Remark 2. Definition 1 can be as a discrete version of the
dissipativity concept of [38].

We now give a sufficient condition for the switched system
(1) to be dissipative. Before doing so, we make the following
assumption for the storage functions Vi, the supply rates si(y, ui)
and the cross-supply rates φi

r(x, y, ui, k) which will be used in the
following results.

Assumption 2. Vi(fi(x, ui)), si(y, ui) and φi
r(x, y, ui, k) are all C2

and quadratic with respect to control.

Theorem 1. Let Vi(x), si(y, ui) and φi
r(x, y, ui, k) be storage func-

tions, supply rates and cross supply rates, respectively, all being
quadratic in ui. If the following conditions hold

Vi(fi(x, 0)) − Vi(x) +

M
r=1,r≠i

βir(Vr(x) − Vi(x))

≤ si(hi(x, 0), 0), (4a)
∂Vi(a)

∂ a


a=fi(x,0)

∂ fi(x, ui)

∂ ui


ui=0

=
∂ si(hi(x, ui), ui)

∂ ui


ui=0

+
∂ si(hi(x, ui), ui)

∂ y
∂ hi(x, ui)

∂ ui


ui=0

, (4b)
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