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a b s t r a c t

The observability of Boolean control networks is investigated. The pairs of states are classified into three
classes: (i) diagonal, (ii) h-distinguishable, and (iii) h-indistinguishable. For h-indistinguishable pairs, we
construct a matrix W called the transferable matrix, which indicates the control-transferability among
h-indistinguishable pairs. Modifying W yields a Boolean matrix U0, which is used as the initial matrix
for an iterative algorithm. After finite iterations a stable U∗ is reached, which is called the observability
matrix. It is proved that a Boolean control network is observable, if and only if, the last column of U∗,
Colr+1(U

∗) = 1r . Some numerical examples are presented.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Boolean networks (BNs)were first proposed by S. Kauffman
to describe genetic regulatory networks [1]. Since then the BN has
attracted a considerable attention from systems biology, physics
as well as systems science. In 2001, [2] pointed out that the
genetic regulatory networks have input(s) and output(s), and they
can be described as Boolean control networks (BCNs). Then the
investigation of BCNs increases [3–6]. But during this period, most
of the research were concentrated on control only. As pointed out
by [5] that ‘‘One of themajor goals of systems biology is to develop
a control theory for complex biological systems’’. But because the
genetic networks are logical and there were shortage of proper
tools to deal with logical dynamic systems, the results on Boolean
control networks (BCNs) were limited.

Using semi-tensor product (STP) of matrices, an algebraic state
space approach to BNs and BCNs was proposed [7,8]. It stimulates
the research on BNs and BCNs.We refer the reader to [9] for several
dynamic and/or control problems of BNs, and to [10] for STP.

The controllability and observability are two fundamental
problems in the control of BNs as well as in the control theory. The
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controllability of various types of BNs has been solved neatly. For
instance, [7,11] solved the controllability of standard formof BCNs;
the controllability of state restricted BCNs was solved in [12];
the controllability of probabilistic BCNs was solved in [13,14].
The controllability of time-varying BCNs [15], higher order BCNs
[16,17], switched BCNs [18,19], time-delay BCNs [20,21], and
periodic BCNs [22], etc., has also been investigated.

Similarly, the observability of BCNs has also been widely inves-
tigated. Though there is no dual relationship between controllabil-
ity and observability such as for linear systems, as a convention,
sometimes the observability of BCNs is still discussed simultane-
ously with controllability [7,21,23–26].

Unlike the controllability, the observability of BCNs has various
definitions, and for the most general (sharp) definition, the
necessary and sufficient condition was still not known until [27],
see also [28].

First of all, [27] discussed four different definitions of observ-
ability in the recent literature. We first cite these four definitions
in a uniform way, which might be different from the original ones
in statement, but have been proved in [27] that the following four
definitions are equivalent to their original ones.

Definition 1.1. A BCN is observable, if
(D1) [7] for any initial state x0 there exists an input sequence

{u0, u1, . . .} such that for any x̄0 ≠ x0 the corresponding
output sequences (y0, y1, . . .) ≠ (ȳ0, ȳ1, . . .);

(D2) [11] for any two distinct states x0, x̄0 there is an input se-
quence {u0, u1, . . . , up}, p ∈ Z+, such that the corresponding
output sequences (y0, y1, . . . , yp) ≠ (ȳ0, ȳ1, . . . , ȳp);
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Fig. 1. The relationships of D1–D4.

(D3) [23] there exists an input sequence {u0, u1, . . . , up}, p ∈

Z+, such that for any two distinct x0, x̄0, the corresponding
output sequences (y0, y1, . . . , yp) ≠ (ȳ0, ȳ1, . . . , ȳp);

(D4) [24] for any two distinct states x0, x̄0 and for any input
sequence {u0, u1, . . .}, the corresponding output sequences
(y0, y1, . . .) ≠ (ȳ0, ȳ1, . . .).

The relationship among these four definitions is described in
Fig. 1 [27].

In Fig. 1 ‘‘→’’ means implication and ‘‘−×→’’ means not
implication. Note that the ‘‘implication’’ means that if a BCN
satisfies the preceding definition it also satisfies the following one.
From Fig. 1 it is clear that D2 is the most sensitive (sharp) one.
So as proposed by [27], we may take D2 as the standard one and
concentrate on this definition. Hereafter, the observability of BCNs
we concerned will be the one specified by D2.

In [11] only a sufficient condition was provided, while other
papers deal with various other kinds of observability. Hence, the
necessary and sufficient condition for observability of Boolean
networks was still unknown until [27].

By resorting to formal language and finite automata, [27] (refer
also to [28]) presents a necessary and sufficient condition for
the observability of BCNs. Their result is like this: For each pair
of distinct states (x0, x̄0), an algorithm is provided to construct
a deterministic finite automata (DFA), denoted by A(x0,x̄0). Then
a system is not observable, if and only if, there is a pair of
distinct states (x0, x̄0), such that the correspondingDFA,A(x0,x̄0) can
recognize its corresponding alphabet.

The result provided by [27] is the first theoretically verifiable
necessary and sufficient condition for the observability of BCNs.
But its computational complexity is a severe problem. As de-
scribed in the paper, it is necessary to draw a DFA for each pair of
h-indistinguishable pair of states, and then verify its recognizable
languages. It can be practically done only for very small toy sys-
tems. Moreover, the knowledge about formal language and finite
automata is required to understand their technique.

The purpose of this paper is to give an alternative set of
necessary and sufficient conditions for the observability of BCNs.
The necessary and sufficient conditions are easily verifiable and
do not involve any additional auxiliary machines such as finite
automata or so. Using the transition matrix of h-indistinguishable
matrix W we construct a Boolean matrix, U0. That is a matrix
with entries in {0, 1}. Then an algorithm is proposed to perform
an iteration on


Ui

|i = 0, 1, . . .

. After finite iterations a fixed

matrix U∗, called the observability matrix, will be reached. It is
proved that the BCN is observable, if and only if, the last column
of U∗, which is the set of distinguishable indices of each rows
respectively, is Colr+1(U

∗) = 1r .
Though the approach seems completely different from [27], the

initial idea was motivated by [27].
The paper is organized as follows: Section 2 presents some

preliminaries. It consists of two subsections: one is a brief in-
troduction to the semi-tensor product of matrices, and the other

is for the algebraic state space representation of logical dy-
namic systems. Section 3 studies the observability of BCN. The
h-indistinguishable matrix W is constructed. Using it, the algo-
rithm is introduced. Then themain result is obtained as a necessary
and sufficient condition. In Section 4 some illustrative examples
are presented to demonstrate the algorithm and the main result.
Some related topics are discussed in Section 5 as the concluding
remarks.

2. Preliminaries

2.1. Semi-tensor product of matrices

This subsection gives a brief review for STP. The readers can
refer to [10] for details.

First, we give some notations:

• Z+: the set of non-negative numbers.
• 1n = [1, . . . , 1  

n

]
T .

• Mm×n: the set of m × n real matrices.
• Col(M) (Row(M)) is the set of columns (rows) of M . Coli(M)

(Rowi(M)) is the ith column (row) of M .
• D := {0, 1}.
• δi

n: the ith column of the identity matrix In.
• ∆n :=


δi
n|i = 1, . . . , n


, ∆ := ∆2.

• Amatrix L ∈ Mm×n is called a logical matrix if the columns of L,
denoted by Col(L), are of the form δk

m, 1 ≤ k ≤ m. That is,

Col(L) ⊂ ∆m.

Denote by Lm×n the set ofm × n logical matrices.
• If L ∈ Ln×r , by definition it can be expressed as L = [δ

i1
n ,

δ
i2
n , . . . , δir

n ]. For the sake of brevity, it is briefly denoted as
L = δn[i1, i2, . . . , ir ].

Definition 2.1. Let M ∈ Mm×n and N ∈ Mp×q, and t = lcm{n, p}
be the least common multiple of n and p. The semi-tensor product
(STP) ofM and N , denoted byM n N , is defined as

M n N :=

M ⊗ It/n

 
N ⊗ It/p


∈ Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

When n = p, the STP coincides with the conventional matrix
product. So the STP is a generalization of conventional matrix
product. Fortunately, it keeps all the properties of the conventional
matrix product unchanged. We, therefore, omit the symbol ‘‘n’’
mostly. In addition, it has some new properties. The following
property is frequently used in the sequel.

Proposition 2.2. Let X ∈ Rm be a column andM be anymatrix. Then

X n M = (Im ⊗ M) X . (2)

Definition 2.3 ([29]). M ∈ Mm×p, N ∈ Mn×p. The Khatri–Rao
product ofM and N is defined as

M ∗ N := [Col1(M) n Col1(N), . . . ,

Colp(M) n Colp(N)


∈ Mmn×p. (3)

2.2. Algebraic state space representation of Boolean networks

Definition 2.4. 1. A function f : Dn
→ D is called a Boolean

function. It can be expressed as

y = f (x1, x2, . . . , xn), y, x1, . . . , xn ∈ D. (4)
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