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A B S T R A C T

Multivariate models are used in many fields to predict a response from a set of variables having an undeter-
mined covariate structure. Variable selection often improves multivariate model performance by removing
information not related to the response of interest. Many variable selection methods exist for this purpose. This
study investigates Polar Qualification System (PQS) as a tool for variables selection. A Raman transmission
dataset of tablets containing Niacinamide (active pharmaceutical ingredient) and Niacin (degradant) was
modeled for degradant weight concentration using Partial Least Squares (PLS) regression. Three variable se-
lection techniques were compared for the development of a stability indicating method: specific peak selection
(manual selection), genetic algorithms (GA-PLS), and a newly developed PQS-Hadamard method. The model
performance of these techniques was compared to a model developed with the whole spectrum. All models
built with selected variables showed reduced prediction error compared to model created with the full variable
range. However, the PQS-Hadamard method was demonstrated to be more computationally efficient compared
to GA-PLS. Further, it is a potentially automatable process, unlike the specific peak selection, which requires
expert selection of variables.

1. Introduction

Multivariate models are often complex due to the unknown re-
lationships among the variables and the response. The elimination of
covariate and non-informative variables enhances model interpretation.
Also, it is commonly accepted that the predictive ability of the model is
improved if the non-informative variables are removed [1,2]. Examples
of variable selection have been demonstrated for spectroscopic data such
as Near Infrared (NIR) and Raman [2–8]. In spectroscopic data, variable
selection is referred to as wavelength selection. Raman and NIR spectra
have responses at wavelength regions associated with specific functional
groups. If a quantitative NIR/Raman model is built for a specific
component, selecting only wavelength regions or Raman shifts associated
with the functional groups in that component can improve model per-
formance [7].

However, there are disadvantages with variable selection.
Including all variables can enhance model robustness in spectroscopic

based models. In addition, removing wavelength bands not corre-
sponding to parameter/analyte of interest doesn't always improve
model accuracy and robustness [9]. A reason being that the wave-
length region corresponding to the analyte of interest can still include
overlapping interference that are difficult to isolate. Including all
variables is a simplistic approach for model robustness, however, extra
cost is required to generate all the relevant samples featuring expected
interference. Therefore, variable selection methods that appropriately
identify significant variables associated with the analyte of interest
and remove interfering variables are desirable.

There are various types of variable selection techniques. They can
be categorized as ‘Manual’, ‘Univariate’, ‘Sequential’, and ‘Multivar-
iate’ [10]. The ‘Manual’ technique involves the selection of variables
based on prior knowledge; typically requiring expert knowledge of the
data. Selection of wavelength regions specific to the analyte of interest
is an example of manual variable selection for spectroscopy. In many
cases however, extensive prior knowledge of the data is not available.
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‘Univariate’ methods involve calculating a measure of correlation be-
tween each variable and the response, then selecting variables based
on highest correlation [10]. This method will provide information on
the most significant individual variables but will not provide infor-
mation on the multivariate structure of variables. Combining collinear
variables that are informative with respect to the response typically
reduces noise associated with individual variables thus improving the
model performance [11,12]. ‘Sequential’ and ‘Multivariate’ methods
seek to take advantage of combination of variables. ‘Sequential’
methods include algorithms such as backwards elimination and for-
ward selection [13]. ‘Multivariate’ methods use multivariate model
statistics to locate the collection of variables which give the best model
performance. Examples include iterative Partial Least Squares (iPLS)
[12], Genetic Algorithms using partial least-squares (GA-PLS) [14–16],
uninformative variable elimination (UVE) [11], and significance tests
of model parameters [10]. In this work, a new automated variable
selection technique (Polar Qualification System-Hadamard (PQS-Ha-
damard) method) is presented.

Genetic algorithms combined with partial least-squares (PLS)
regression is widely used as a wavelength selection technique for
spectroscopic data sets [17]. The GA-PLS method is preferred over
other ‘multivariate’ methods due to its heuristic search algorithm. It
effectively generates combinations of variables that are iteratively
optimized using PLS model statistics to ensure no loss of predictive
ability [12,15,16,18–20]. ‘Multivariate’ methods such as GA-PLS are
advantageous as they require no prior knowledge of the data and are
readily automated. However, these methods are computationally
demanding and require users to select a large number of parameters
(starting/ending conditions), limiting its use to expert practitioners.
These user-defined inputs need to be carefully selected as they influ-
ence the final selected variables. As a variable selection technique,
GA-PLS is susceptible to overfitting [17]. However, it is accepted as a
variable selection tool and is used as a standard to compare new
variable selection techniques [12]. The method proposed in this article
(PQS-Hadamard) has the advantages of an automated method while
reducing user defined inputs, improving calculation efficiency, and
minimizing the potential for overfitting.

A transmission Raman dataset of multi-component tablets was
analyzed in this work. These tablets contained Niacinamide, the
active pharmaceutical ingredient (API), and Niacin, the degradant,
along with various excipients. Niacinamide is a form of vitamin B3
(Niacin), which is used to prevent pellagra, and is usually preferred
over Niacin due to less severe side effects. Quantitative prediction
models were generated to predict the degradant (Niacin) percent
weight.

The goal of this study was to compare quantitative Niacin prediction
performance with variables selected by PQS-Hadamard method to vari-
ables selected by genetic algorithms and specific peak selection on a
transmission Raman dataset.

2. Theory

2.1. Genetic algorithms

Genetic algorithms are primarily used for variable selection optimi-
zation [21]. The methodology of genetic algorithm is based on Darwin's
theory of evolution where new generation/population of variables are
created by combining variables with ‘good fitness’. Genetic algorithms
seek to enhance ‘fitness’ between each generation until an end-point
criterion is reached. For GA-PLS, ‘fitness’ enhancement is typically
based on minimization of PLS model statistics such as cross validation
error or prediction error. This paper specifically used cross validation
error for ‘fitness’ assessment.

Genetic Algorithms involve four main steps [10] explained below:

- Step 1: Assign a random binary value to a variable (or window). This
vector is randomly selected. The next vector is again a randomization
of the binary code. This process is repeated ‘m’ times resulting in ‘m’

vectors. The ‘m’ term is a user defined input and is referred to as the
initial population size.

- Step 2: Generate PLSmodels from variables selected from each vector.
The root mean square error of cross validation (RMSECV) is then used
to assess the ‘fitness’ of each vector. The vectors with ‘good fitness’
(low RMSECV) in this step are referred to as the ‘parent’ vectors and
are carried on to the next step.

- Step 3: Undergo crossover. The ‘parent’ vectors from step 2 are
combined with one another to create a new population (or genera-
tion). The combination occurs by taking two ‘parent’ vectors and
splitting them at the same one (single crossover) or two (double
crossover) randomly chosen point(s). The resulting segments are then
crossed (only middle section crossed for double crossover) to create
two ‘offspring’ vectors. The idea is that these ‘offspring’ vectors have
‘better fitness’ than their ‘parent’ vectors. Double crossover is usually
used because the ‘offspring’ vectors are more similar to the ‘parent’
vectors

- Step 4: Perform mutation. In each new generation vector, a small
probability (mutation rate) of a change to each variables' binary code
is added. This is important because if a variable is not selected in the
initial population then it may never be selected. Mutation allows for
these non-selected variables to have a chance to be considered. Mu-
tation rates are typically low in order to advance the algorithms to an
end-point.

This algorithm is repeated until convergence criteria are met. This
criterion is user defined and is often a function of the percent of identical
variables selected in each vector and the minimization of cross-validation
error.

2.2. Polar Qualification System (PQS)

Spectral data processing is computationally extensive; chemo-
metrics tools such as Principal Component Analysis (PCA) and PLS
continue to require appreciable processing power. To simplify spec-
troscopic analysis, and reduce computational demands, Polar Qualifi-
cation System (PQS) was introduced by Kaffka and Gyarmati in the 3rd
International Conference on Near Infrared Spectroscopy in Brussels
[22–24].

This technique involves representing spectra in polar coordinates
(polar spectra) to obtain one value (center of mass of the polar spectra)
representing an entire spectrum. The reason to use polar coordinates is
to introduce geometrical considerations, as the center of mass between
samples will move towards wavelengths/variables with high variance.
This method has already been applied as a wavelength selection
technique and used for quality control purposes [24,25] however this
work applies additional procedures to efficiently automate the PQS
method.

Polar Qualification System involves three steps listed below. Similar
to chemometric techniques such as PLS, appropriate spectral pre-
processing is applied to enhance signal to noise ratio before performing
these three steps.

- Step 1: Spectral transformation from Cartesian space into polar space.
- Step 2: Calculation of centers of mass.
- Step 3: Classification of centers of mass.

The first step is to represent Raman spectra in polar space. In a polar
space, a point is defined by an angle and a radius. The angle represents
the variable so the first variable will be the first angle, the second variable
will be the second angle and so on. The radius then represents the value

S. Mohan et al. Chemometrics and Intelligent Laboratory Systems 180 (2018) 1–14

2



Download English Version:

https://daneshyari.com/en/article/7561749

Download Persian Version:

https://daneshyari.com/article/7561749

Daneshyari.com

https://daneshyari.com/en/article/7561749
https://daneshyari.com/article/7561749
https://daneshyari.com

