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A B S T R A C T

Increasing data-driven soft sensors have been adopted to online predict the quality indices in polymerization
processes to improve the availability of measurements and efficiency. However, in industrial rubber mixing
processes, most existing soft sensors for online prediction of the Mooney viscosity only utilized the limited labeled
data. By exploring the unlabeled data, a novel soft sensor, namely just-in-time semi-supervised extreme learning
machine (JSELM), is proposed to online predict the Mooney viscosity with multiple recipes. It integrates the just-
in-time learning, extreme learning machine (ELM), and the graph Laplacian regularization into a unified online
modeling framework. When a test sample is inquired online, the useful information in both of similar labeled and
unlabeled data is absorbed into its prediction model. Unlike traditional just-in-time learning models only utilizing
labeled data (e.g., just-in-time ELM and just-in-time support vector regression), the prediction performance of
JSELM can be enhanced by taking advantage of the information in lots of unlabeled data. Moreover, an efficient
model selection strategy is formulated for online construction of the JSELM prediction model. Compared with
traditional soft sensor methods, the superiority of JSELM is validated via the Mooney viscosity prediction in an
industrial rubber mixer.

1. Introduction

Accurate and reliable measurements of process variables and quality
indices in chemical processes can ensure the success in their products.
The industrial rubber mixing process is a fast (only 2–5min), nonlinear,
and time-varying batch process performed in an internal mixer. The
Mooney viscosity is a key quality index which represents the viscoelastic
behavior of an elastomer. Up to date, an accurate first-principles Mooney
viscosity model is still not available. On the other hand, in most rubber/
tire factories, the Mooney viscosity can be only obtained offline using
laboratory analysis several hours later after a batch has been discharged
[1,2]. In the absence of an economical or effective online measurement,
soft sensors (or inferential sensors) could serve as an alternative solution
[3–7]. Additionally, with the wide availability of process data in rub-
ber/tire factories, increasing data-driven soft sensors have been adopted
to predict the Mooney viscosity information [8–16].

Nowadays, common data-driven soft sensors for the Mooney viscosity
prediction include neural networks (NN) [8–10], multivariable regres-
sion (e.g., partial least squares regression), and kernel learning-based
regression approaches [11–16]. However, up to now, most of them are
constructed in a supervised learning manner. This means that complete

data samples including both input and output variables are need. Here,
the labeled dataset denotes the one containing both of input and output
data. And the unlabeled dataset represents the one only has input data. In
the machine learning area, training a model with both of labeled and
unlabeled data is known as semi-supervised learning. By suitably incor-
porating the information of unlabeled data into the supervised regression
model, more accurate prediction of semi-supervised models can often be
obtained than related supervised methods [17,18]. However, in chemical
processes, semi-supervised soft sensor applications are still much fewer
than those with supervised models [19–22]. From a practical modeling
viewpoint, with lots of unlabeled data available, the development of
novel semi-supervised soft sensors is promising.

As shown in Fig. 1, due to the time-consuming and costly lab assaying
process in industrial rubber/tire plants, the assayed Mooney viscosity are
delayed and limited. On the other hand, the mixing pressure, the mixing
temperature, and other mixing variables are online measured continually
during every production batch in an industrial mixer. This means lots of
unlabeled data are available, while labeled data are limited. To cope with
the gap, recently, a semi-supervised extreme learning machine (SELM)
[23] and its improved version were applied to predict the Mooney vis-
cosity with one recipe and showed better prediction performance than
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only using the soft sensor with labeled data [24]. However, for multiple
mixing recipes with different characteristics, only using a single model is
still not enough. Additionally, the varying properties of raw materials
and mixing operating conditions indeed introduce batch-to-batch varia-
tions to both of the quality index and process data. As pointed out by Lu
and Chiang [7], the life spans of most data-driven soft sensors are limited
in practice. Consequently, a flexible model with adaptive structure is
more suitable and attractive in industrial processes.

Just-in-time learning (JITL) methods, as an alternative solution, have
been utilized in the development of data-driven soft sensors in chemical
processes, especially for those with multiple modes/grades [25–29].
However, most traditional JITL-based soft sensors were built in a su-
pervised learning manner. For online prediction of a query sample, only
the labeled data are considered as the similar data. The information
hidden in lots of unlabeled data (e.g., those online measured process
variables) is omitted in selection and modeling of similar samples. As a
result, the performance of JITL-based soft sensors may be restricted to
some extent, especially when the labeled data are limited in industrial
practice. To our best knowledge, the JITL-based semi-supervised soft
sensor has not yet been developed, especially for rubber mixing process
applications.

In this work, a JITL-based SELM (denoted as JSELM) soft sensor is
proposed to predict the Mooney viscosity. The JSELM method integrates
the JITL modeling manner, extreme learning machine (ELM) [30,31],
and the graph Laplacian regularization into a unified framework. For
online inquiry of a test sample, the useful information in both of similar
labeled and unlabeled data is absorbed into its prediction model. Addi-
tionally, a fast cross-validation strategy is formulated for online con-
struction of the JSELM model efficiently. Consequently, compared with
traditional JITL models only using labeled data (e.g., JITL-based ELM
[29]), the prediction performance of JSELM can be enhanced by taking
advantage of the information in unlabeled data.

The remainder is so organized. In Section 2, after a brief introduction
of ELM, the SELM soft sensing method is formulated. In Section 3, the
proposed JSELM method with its model selection strategy is developed.
The JSELM approach is validated via the industrial Mooney viscosity
prediction in Section 4. Finally, the conclusion is drawn in Section 5.

2. SELM soft sensor modeling method

2.1. Brief overview of ELM model

In chemical processes, NN-based soft sensors have been widely uti-
lized in past two decades. With a single layer feed-forward NN structure,
the weights of the hidden neurons in ELM can be obtained very fast [30,
31]. Due to its easy-to-use and nonlinear modeling properties, increasing

ELM-based soft sensor applications have recently caught more attention
[29,32–34]. Here, the ELM-based supervised modeling algorithm is
briefly described. The labeled set is denoted as fSlg ¼ fXl; Ylg, where

fXlg ¼ fxlig
L
i¼1 and fYlg ¼ fylig

L
i¼1 are the input and output datasets with

L samples, respectively. ELM with N hidden nodes and the activation
function gð�Þ can approximate the training data with zero error, which

means
PL

i¼1

���yli � byl
i

��� ¼ 0, where yli and byl
i denote the measured output

and predicted output, respectively. Compactly, the regression formula-
tion of ELM is represented as [30,31]:

Hβ ¼ Yl (1)

where the output matrix of hidden-layerH ¼ ½h1;h2;⋯;hN �L�N with hi ¼24 gðhai; xl1i þ biÞ
⋮

gðhai; xlLi þ biÞ

35
L�1

; i ¼ 1;⋯;N; gðhai; xlji þ biÞ is the output of the ith

hidden node related to the jth input xlj. The terms ai and bi denote the

input weight and the bias of the ith hidden node, respectively; and hai; xlji
denotes the inner product of ai and xlj. Here, the common sigmoidal

function gðvÞ ¼ 1
1þexpð�vÞ is adopted for its nonlinear modeling ability.

And β ¼
24 β1

⋮
βN

35
N�1

is the output weight parameter.

The weights of ELM are not necessarily retuned using some complex
training algorithms [30,31]. For many regression cases, the number of
training samples is much more than the number of hidden nodes, i.e.,

L >> N. As a result, the output weights bβ are formulated as [30,31]:

bβ ¼ ðHTHÞ�1HTYl (2)

Furthermore, to avoid the problem of HTH being noninvertible, a
regularized ELM (RELM)model was constructed by simply adding a small

value of ridge parameter γ > 0 to obtain bβ [29,32].

bβ ¼ ðHTHþ γIÞ�1HTYl (3)

where I is a unit matrix.
Finally, for a test sample xt ¼ ½xt1; xt2;⋯; xtn�T 2 Rn, its prediction byt

is obtained below:

byt ¼ ht
bβ¼ htðHTHþ γIÞ�1HTYl (4)

where ht is the output hidden-layer vector related to xt .

2.2. SELM modeling approach

Semi-supervised learning algorithms assume that the input patterns
from both labeled and unlabeled data are drawn from the same marginal
distribution. Additionally, with the smoothness assumption [17,18], the
data in the local region should have similar labels. In such a situation, the
unlabeled data naturally provide useful information for exploring the
data structure in the input space. By assuming that the input data follow
the same manifold in the input space, semi-supervised learning algo-
rithms can incorporate both labeled and unlabeled data into the learning
process. Consequently, benefiting from lots of unlabeled data, the SELM
model could provide more accurate prediction performance than ELM
[23,24].

The input and output data samples are denoted as fXg ¼ fXl [ Xug

and Y ¼
�
Yl

Yu

�
¼

26666664
yl1
⋮
ylL
0
⋮
0

37777775
ðLþUÞ�1

, respectively. Correspondingly, the hid-

Fig. 1. Lots of unlabeled data during every batch and limited labeled data only
available offline every several batches.
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