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A B S T R A C T

Theory of peak integration is revised for very narrow peaks. It is shown, that Trapezoidal rule area is efficient
estimate of full peak area with extraordinary low error. Simpson's rule is less efficient in full area integration.
Theoretical conclusions are illustrated by digital simulation and processing of experimental data. It was shown
that for Gaussian peak Trapezoidal rule requires 0.62 points per standard deviation (2.5 points per peak width at
baseline) to achieve integration error of only 0.1%, while Simpson's rule requires 1.8 times higher data rates.
Asymmetric peaks require higher data rates as well. Reasons of poor behavior of Simpson's rule are discussed;
averaged Simpson's rules are constructed, these rules coincide with those based on Euler-Maclaurin formula.
Euler-Maclaurin rules can reduce error in the case of partial peak integration. Higher peak moments (average
retention time, dispersion, skewness, etc.) also exhibit extraordinary low errors and can potentially be used for
evaluation of peak shape.

1. Introduction

Extension of data rate range in the direction of low data rates is an
important capability that can be very useful in the case of fast chroma-
tography, hyphenated techniques, chromatography–mass spectrometry
data processing. These techniques sometimes produce data with quite
little number of points per peak, and capability to extract useful infor-
mation from these data can significantly help researchers.

In this article we focused on the theory of data processing in the case
of very low data rates, typically considered as unacceptable due to
insufficient number of points per peak [1]. Main attention is paid to peak
area, which is the major metrological characteristic of the peak.

The task of evaluation of sufficient data rate in chromatographic
analysis started to be discussed in early 1970's [2–9] after appearance of
computer data processing in chromatography. Authors paid great atten-
tion to influence of noise level, in most studies proper determination of
peak height, width and asymmetry factor was required. Approaches to
the problem of area integration were usually based on:

1) theoretical conclusions made using Fourier transform and informa-
tion theory: according to [6] 0.9 pts/σ is needed to achieve <0.1% of
integration error;

2) digital modeling experiments: according to [7] 0.5 pts/σ is needed to
achieve <1% of integration error, lower error limits were not ach-
ieved due to noise simulation. Seeley [9] studied dependence of peak
parameters on duty cycle using rectangle rule and confirmed value of
0.5 pts/σ for small duty cycles;

3) theoretical conclusions made using textbook error formulas for inte-
gration rules: Тrapezoidal integration rule requires 14 pts/σ to ach-
ieve <0.1% of integration error [8]; Simpson's rule for the same
accuracy requires 1.7 pts/σ [2] or 2.5 pts/σ [8].

All data rate requirements correspond to Gaussian peak. In papers
that used textbook error formulas [2,8] no digital modelling was made;
estimates were based entirely on theoretical considerations. Requirement
of such a large number of points per peak in third approach contradicts
results of first two approaches [3,4,6], and our own estimates. We
decided to revise argumentation used in textbooks, especially for the case
of peak-like function. This is especially important, as some of papers
insist on using Simpson's rule in chromatographic integration software
[8].
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2. Theory

2.1. Notations and formulas

Variable x stays for elution time, volume, distance or other indepen-
dent retention parameter.

Peak is a real analytic (in the math sense) function f(x) of one real var-
iable x, such that the function itself and all its derivatives can be considered
equal to zero outside of finite interval x 2 ða;bÞ. Mathematical term “Ana-
lytic”means, that we can use Taylor series for analysis of the function.

Our definition of peak is too simple from the rigorous mathematical
point of view, but perfectly fits the case of experimental data processing.
It allows us to avoid using o(), O() and

P
, presenting just the ideas of

proofs in the simplest way. Exact zero outside the interval (a,b) is not a
must, but in practice of data processing all experimental data are pro-
duced by some analog-to-digital converters (ADCs), that output integers
as a result of conversion. Signal in the region, where peak function jf(x)j
(with subtracted baseline) becomes smaller, than ADC conversion unit
(or baseline noise), can be considered as zero together with all statisti-
cally significant derivatives. Experimental data processing should be
arranged so, that derivatives, which cannot be measured with sufficient
accuracy, can be neglected.

Data grid (frame). We assume, that function f(x) is measured or
calculated at discrete set of Nþ1 points {x0, x1, x2,…xN} with equidistant
sampling period (step) h:

xi ¼ aþ i � hþ ε; i ¼ 0…N; h ¼ b� a
N

;�h=2 < ε < h=2

where ε is a digitization grid shift, which is a random real number uni-
formly distributed on the interval –h/2< ε< h/2 (probability density
equals to P(ε)¼ 1/h inside this interval and P(ε)¼ 0 outside it). The
reason of introducing term ε is in the lack of advance knowledge about
the position of the peak apex with respect to grid (e.g. due to variability
of chromatographic retention time from run to run).

Exponentially Modified Gaussian (EMG) function [10–13].
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where hG is height, μG – position of the apex, σG – standard deviation of
unmodified Gaussian; τ – time constant of modifying exponent; erfcx() –
scaled complementary error function [14]. Dispersion of EMG σ2 can be
calculated [10–13] as σ2 ¼ σ2G þ τ2

Euler-MacLaurin formula [15]
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where B2k is a Bernoulli number (B2¼ 1/6; B4¼�1/30; …), 2m is
maximal derivative order used in calculation and Rm is a remainder term,
evaluating contribution of derivatives, higher than 2m. We present
Euler-Maclaurin formula not exactly like in textbook, but solved for in-
tegral part.

Peak moments.
Zeroth peak moment is peak area

M0 ¼
Z ∞

�∞
f ðxÞdx � h �

XN
i¼0

f ðxiÞ (3)

First moment is average retention time (unfortunately, it is rarely
used in chromatography)
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Second central moment is a dispersion of the peak (standard devia-
tion σ is a square root of dispersion):
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Other moments usually are presented not only central, but also
normalized to σn.
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Instead of third moment, it is convenient to use estimate of parameter
τ of EMG peak function with the same third moment [10–13]:

τ¼ σ(M3/2)1/3 (7)

For simplicity of presentation digital formulas of moments correspond
to Midpoint Rectangle integration rule.

Phase shift φ¼ ε/h.
Duty cycle – fraction of sampling period where function (signal) is

averaged during measurement. Can be expressed as a fraction of one or in
percent. All considerations of this paper correspond to instantaneous
measurements with duty cycle of 0.0. For integrating ADC with duty
cycle 1.0, peak area is defined by the sum of measurements by default
and even one-point peak in the absence of noise will have exactly
measured area. Duty cycle for the first dimension in the 2-D chroma-
tography is usually close to 1.0, while duty cycles for fast scanning UV
detectors or single quadrupole GC-MS are close to 0.0.

Data rate ν¼ σ/h.

2.2. Integration rules

The task of integration is to estimate area – definite integral of
function f(x) on (a, b).

All composite integration rules can be represented by a single for-
mula:

A ¼ h �
XN
i¼0

wðxiÞf ðxiÞ (8)

where A is area, w(xi) – weight coefficients. Rectangle, Trapezoidal,
Simpson's and other composite integration rules differ from each other by
the set of coefficients w(xi).

2.2.1. Rectangle and Trapezoidal rules give identical peak areas
Let us set limits of summation in formula 8 so, that f (x1)¼ f (xN)¼ 0

according to our definition of peak. For the Rectangle rule, all coefficients
are ones w()¼ {1,1,1, …,1,1,1}. Weight coefficients of Trapezoidal rule
are w ()¼ {1,2,2, …,2,2,1}/2. As peak function is equal to zero on the
boundaries of the integration interval, areas of the peak calculated using
Rectangle and Trapezoidal rules are exactly equal.

In general case we should note that integration limits for composite
Midpoint Rectangle rule are from position x0-h/2 to position xN þ h/2,
and integration limits for Trapezoidal rule are from x0 to xN. If we adjust
integration limits for Midpoint Rectangle rule to those of Trapezoidal rule
by throwing away half of first and last rectangles, weight coefficients of
two rules will exactly coincide; their common weight formula is that of
Trapezoidal rule.

2.2.2. Simpson's composite integration rule provides two estimates
Simpson's 1/3 (further named just Simson's) rule utilizes parabola

built for three successive points (Fig. 1). It has coefficients w()¼ {1, 4,
1}/3 for three successive nodes (elementary rule) and w()¼ {1,4,2,4,
…,4,2,4,1}/3 for odd number of nodes (composite rule) [15]. In the case
of peak, we can get two different estimates of area, shifting first point of
integration frame by one point. These two implementations of Simpson's
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