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a b s t r a c t

How to efficiently use limited system resources in distributed receding horizon control (DRHC) is an
important issue. This paper studies the DRHC problem for a class of dynamically decoupled nonlinear
systems under the framework of event-triggering, to efficiently make use of the computation and
communication resources. To that end, a distributed periodic event-triggered strategy is designed and
a detailed DRHC algorithm is presented. The conditions for ensuring feasibility of the designed algorithm
and stability of the closed-loop system are developed, respectively. We show that the closed-loop
system is input-to-state stable if the energy bound of the disturbances, the triggering condition and the
cooperation matrices fulfill the proposed conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The distributed receding horizon control (DRHC) finds many
applications in multi-agent systems, smart-grids, energy systems,
chemical processes, and so on. In the past few years, many results
on DRHC are developed with many different focuses. Generally
speaking, the results can be categorized into two classes according
to the characteristics of the large-scale systems, namely, the large-
scale systems with coupled subsystems (see, e.g., [1,2]) and those
with decoupled subsystems (see, e.g., [3,4]). The second type of
study can be used for cooperative control, formation control, and
synchronization of multi-agent systems such as multiple robots,
aircraft fleet, multiple sensor systems, which is of great practical
interest and is the focus of current study.

Althoughgreat progresses have beenmade for solving theDRHC
problem, an important practical issue still remains unaddressed:
How to use limited computation and network resources in a
large-scale system to achieve acceptable control performance?
So far, most of the results of DRHC use fixed periods to update
control input signal and exchange information, which is NOT
computational efficient according to the event-triggered control
strategy [5]. Thus, in this paper, we will study the DRHC problem
under the framework of Lebesgue sampling (event based sampling)
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rather than Riemann sampling (conventional sampling with fixed
period), aiming at achieving desired control performance using
limited system resources.

In 2002, an important result on event-triggered control was
developed in [5]. Since then, there have been increasing interest for
studying event-triggered control, for example, [6,7]. Of particular
interest, there have been several results on receding horizon
control (RHC) using event-triggered strategy, which are reviewed
as follows. In [8], an event-triggered control strategy for discrete-
time linear system subject to disturbance is presented. In [9],
Grüne et al. propose to use the linearization error to trigger the
events, determining time instants when an optimization problem
needs to be solved. For linear systems, a self-triggered RHC strategy
is proposed in [10] to avoid continuous testing on triggering
condition. In [11], an event-triggeredRHC scheme is established for
discrete-time nonlinear systems, where the triggering condition
is designed to guarantee the input-to-state stability (ISS), and the
result in [11] is further extended for decentralized RHC in [12].
The event-based distributed RHC for agent cooperation is studied
in [13], extended to [14] by using self-triggered strategy. The
event-triggered RHC stabilization problem of nonlinear systems
without disturbances and with disturbances is reported in [15]
and [16], respectively.

Recently, a novel strategy called periodic event-triggered
strategy is proposed in [17], which requires only periodically
testing the triggering conditions, and thus is more practical
and efficient. The periodic event-triggered control problem of
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nonlinear systems is investigated in [18], where the nonlinear
dynamics is assumed to be p-times continuous differentiable, and
the pth Lie derivative of the triggering-condition function along
the system dynamics needs to be upper-bounded by a function.
In comparison with [18], the nonlinear dynamics in this study
is assumed to be twice continuously differentiable, and a state
feedback control law needs to exist for the linearized system. In
this paper, we consider the DRHC problem of a class of dynamically
decoupled nonlinear systems under the framework of periodic
event-triggering, aiming at developing a practical and efficient
nonlinear DHRC approach. This paper extends the result in [19]
to nonlinear system case, capturing it as a special case. The main
contributions of this study are two-fold:

• A periodic event-triggered DRHC scheme is proposed for a class
of large-scale nonlinear systems. In the new DRHC scheme,
we formulate a new optimization problem for each agent and
then design a detailed periodic triggering strategy for each
agent to determine the time instant when the optimal control
input should be generated. The designed scheme reduces the
communication and computation load by taking advantage
of the event-triggered control, and only requires periodically
testing the triggering conditions, which is practically useful.

• The theoretical analysis of the designed DRHC scheme is
conducted. We establish sufficient conditions for ensuring the
feasibility of the designed DRHC algorithm for each agent. In
addition, we develop sufficient conditions under which the
overall system is stable. It is shown that the closed-loop system
is input-to-state stable, if the energy bound of the disturbances,
the triggering level and the cooperation matrices satisfy the
proposed conditions.

Notations: N represents the set of positive integers, and Rn

denotes the n-dimensional real space. For a matrix P , P > 0 (P >
0) means the matrix is positive definite (positive semi-definite),
and PT and P−1 stands for its transpose and inverse, respectively.
∀x ∈ R, ⌈x⌉ means the smallest integer which is great than or
equal to x. A diagonal matrix P with elements x1, x2, . . . , xn is
denoted as P = diag(x1, x2, . . . , xn). For a vector v ∈ Rn, denote
its 2-norm by ∥v∥, and its P-weighted norm as ∥v∥P ,

√
vTPv,

with P being a given matrix with appropriate dimension. Given a
matrix Q , the maximum and minimum of the absolute values of
its eigenvalues are denoted by λmax(Q ) and λmin(Q ), respectively.
Given two matrices Q and P , λQ ,P , λmax(Q )

λmin(P)
.

2. Problem formulation

Consider a multi-agent nonlinear system of M agents. Each
agent i is described as

ẋi(t) = fi(xi(t), ui(t)) + ωi(t), (1)

where xi(t) ∈ Rn is the system state, ui(t) ∈ Rm is the control
input,ωi(t) ∈ Rn is the disturbance. Due to the actuator saturation,
ui(t) ∈ Ui, whereUi ⊆ Rm is a compact set and contains zero as its
interior point. ωi(t) ∈ Wi with Wi being a compact set, and define
ρi , supωi(t)∈Wi

∥ωi(t)∥.
There is a communication network connecting this multi-agent

system, through which each agent can exchange information with
someagents in its neighboring area. For agent i, define its neighbors
as the agents from which it can receive information. The set of
indices of agent i’s neighbors is denoted by Ni. Assume that each
agent has at least one neighbor. To facilitate the DRHC design, two
standing assumptions are made [20,21].

Assumption 1. For each agent i, suppose (A.1) fi : Rn
× Rm

→ Rn

is twice continuously differentiable, and fi(0, 0) = 0; (A.2) the

control input ui(t) ∈ Ui is piecewise right-continuous; (A.3) for
any initial value xi(0) ∈ Rn, piecewise right-continuous ui(t) ∈ Ui
and disturbance ωi(t) ∈ Wi, t > 0, the differential equation in (1)
admits a unique solution.

The nominal system of the system in (1) is characterized as
˙̄xi(t) = fi(x̄i(t), ui(t)). By linearizing the nominal system at (0, 0),
we can get ˙̄xi(t) = Aix̄i(t) + Biui(t), where Ai = ∂ fi/∂xi|(0,0) and
Bi = ∂ fi/∂ui|(0,0).

Assumption 2. There exists a control law ui(t) = Kix̄i(t) such that
Āi , Ai + BiKi is stable.

The basic idea of receding horizon control (RHC) is: at each time
instant tk, the state x(tk) is sampled and an optimization problem
is solved to generate a optimal control sequence u∗(s; tk), where
s ∈ [tk, tk + T ] and T is the prediction horizon; the subsequence
u∗(s; tk), s ∈ [tk, tk + δ] is applied to the system as control
input until the next sampling time instant tk+1 = tk + δ, where
δ < T is the sampling period. To ensure closed-loop stability and
feasibility, a conventional technique is to force the terminal state
x(tk + T ) in the terminal set at each time instant. By doing so, one
can construct a feasible control trajectory to prove feasibility and
further prove the optimal cost function (i.e., Lyapunov function
candidate) decreasing, leading to closed-loop stability. For more
details, see, e.g., [22]. To design the terminal set, a well-known
result from receding horizon control (RHC) [22,23,21] is recalled.

Lemma 1. For the nominal system of (1), suppose that Assump-
tions 1 and 2 hold. Given a stabilizable Ki, and two symmetric positive-
definite matrices Qi and Ri, there exist a constant εi > 0 and a
matrix Pi > 0, such that: if x̄i(t) ∈ Ωi(εi), then (1) Vi(x̄i(t)) is qual-
ified as a Lyapunov function for the system ˙̄xi(t) = fi(x̄i(t), Kix̄i(t)),
and V̇i(x̄i(t)) 6 −∥x̄i(t)∥2

Q∗
i
, (2) ui(t) = Kix̄i(t) ∈ Ui, where

Vi(x̄i(t)) , ∥x̄i(t)∥2
Pi
, Ωi(εi) , {x̄i(t) : Vi(x̄i(t)) 6 ε2

i } and it is
called the terminal set, and Q ∗

i = Qi + K T
i RiKi.

3. Periodic event-triggered DRHC

3.1. Periodic event-triggering in optimization

For the overall system, define the sequence {tk, k ∈ N} as
the time instants when triggering conditions are checked, where
tk+1 − tk = τ > 0, and τ is called the testing period. Due to the
event-triggered strategy, the information update of overall system
will possibly become asynchronous. To characterize individual be-
havior of each agent i, define the sequence {t ik, k ∈ N} as the time
instants at which the optimization problem is solved and the in-
formation is sent out, where the subscript i represents the index
of agent, and subscript k denotes by the time instant. Furthermore,
the prediction horizon of the optimization problem also needs to
adapt to the periodic event-triggered strategy. Here, the prediction
horizon is set as T = n0τ , where n0 ∈ N and n0 > 1. n0 is called the
testing length, and is the maximum times of checking the trigger-
ing conditions in each round of optimization. That is, if the trigger-
ing condition is checked continuously by n0 times starting from t ik,
and it is still not met, then the optimization problemwill be solved
automatically again at t ik + n0τ . As a result, t ik+1 − t ik = nτ , where
n might take any integer between 1 and n0. In the rest of this pa-
per, three types of control input trajectorieswill be utilized. For the
ease of presentation, we summarize the notations of them here.

• ûi(s; t ik) denotes by the predicted control input trajectory for
agent i at time instant t ik, which is a variable for optimization
problems, where s ∈ [t ik, t

i
k + l] for some 0 6 l < ∞;

• ûa
i (s; t

i
k) denotes by the assumed control input trajectory for

agent i at time instant t ik, which is a fixed trajectory and is
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