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a b s t r a c t

We consider the problems of trajectory generation and tracking for general 2 × 2 systems of first-
order linear hyperbolic PDEs with anti-collocated boundary input and output. We solve the trajectory
generation problem via backstepping. The reference input, which generates the desired output,
incorporates integral operators acting on advanced and delayed versions of the reference output with
kernels which were derived by Vazquez, Krstic, and Coron for the backstepping stabilization of 2 × 2
linear hyperbolic systems.We apply our approach to awave PDEwith indefinite in-domain and boundary
damping. For tracking the desired trajectory we employ a PI control law on the tracking error of the
output. We prove exponential stability of the closed-loop system, under the proposed PI control law,
when the parameters of the plant and the controller satisfy certain conditions, by constructing a novel
‘‘non-diagonal’’ Lyapunov functional. We demonstrate that the proposed PI control law compensates in
the output the effect of in-domain and boundary disturbances. We illustrate our results with numerical
examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Control of 2 × 2 systems of first-order hyperbolic PDEs is an
active area of research since numerous processes can be modeled
with this class of PDE systems. Among various applications, 2 × 2
systemsmodel the dynamics of traffic [1,2], hydraulic [3–6], aswell
as gas pipeline networks [7], and the dynamics of transmission
lines [8].

Several articles are dedicated to the control and analysis of 2×2
linear [3,9,5,10] [11–13] and nonlinear [14–19] systems. Results
for the control of n × n systems also exist [20–23]. Algorithms for
disturbance rejection in 2× 2 systems are recently developed [24,
25]. Themotion planning problem is solved in [26,27], for a class of
2 × 2 systems and in [28,29] for a class of wave PDEs. Perhaps the
most relevant results to the present article are the results in [5],
dealing with the Lyapunov-based output-feedback control of 2×2
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linear systems, the results in [12], dealing with the backstepping
stabilization of 2×2 linear systems, and the results in [27], dealing
with the motion planning for a class of 2 × 2 systems.

In this paper, we are concerned with the trajectory generation
and tracking problems for general 2×2 systems of first-order linear
hyperbolic PDEs with anti-collocated boundary input and output.
We solve the motion planning problem for this class of systems
employing backstepping (Section 2.1). Specifically, we start from
a simple transformed system, namely, a cascade of two first-
order hyperbolic PDEs, for which the motion planning problem
can be trivially solved. We then apply an inverse backstepping
transformation to derive the reference trajectory and reference
input for the original system. Our approach is different than the
one in [12], in that we use backstepping for trajectory generation
rather than stabilization, and the one in [27], in that we employ
a different conceptual idea to a different class of systems. The
idea of the backstepping-based trajectory generation for PDEs,
which was conceived in [30], is applied to a beam PDE in [31]
and the Navier–Stokes equations in [32], and is recently extended
to general n × n linear hyperbolic systems in [22]. We apply
this methodology to a wave PDE with indefinite in-domain and
boundary damping by transforming (see, for example, [33]) the
wave PDE to a 2 × 2 linear hyperbolic system coupled with a
first-order ODE (Section 2.2).

http://dx.doi.org/10.1016/j.sysconle.2015.09.009
0167-6911/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2015.09.009
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2015.09.009&domain=pdf
mailto:pierre-olivier.lamare@imag.fr
mailto:bekiaris-liberis@berkeley.edu
http://dx.doi.org/10.1016/j.sysconle.2015.09.009


P.-O. Lamare, N. Bekiaris-Liberis / Systems & Control Letters 86 (2015) 24–33 25

We then employ a PI control law for the stabilization of
the error system, namely, the system whose state is defined as
the difference between the state of the plant and the reference
trajectory. We prove exponential stability in the L2 norm of the
closed-loop system by constructing a Lyapunov functional which
incorporates cross-terms between the PDE states of the system
and the ODE state of the controller, when the parameters of the
system and the controller satisfy certain conditions (Section 3.1).
Our result differs than the result in [5] in that we employ PI
control on an output of the system in the Riemann coordinates
and we construct a non-diagonal Lyapunov functional for proving
closed-loop stability. We demonstrate that the proposed PI control
law is capable of compensating in the output the effect of
additive disturbances affecting the boundary or the interior of the
PDE domain (Section 3.2). We present several examples, for the
illustration of our methodologies, including a simulation example
dealing with the generation of a sinusoidal reference trajectory for
a wave PDE (Section 4.1) and a simulation example of a system
tracking a sinusoidal reference output (Section 4.2).

2. Trajectory generation using backstepping

2.1. General 2 × 2 linear hyperbolic systems

We consider the following system

z1t + ε1(x)z1x = c1(x)z1 + c2(x)z2 (1)

z2t − ε2(x)z2x = c3(x)z1 + c4(x)z2, (2)
under the boundary conditions

z1(0, t) = qz2(0, t) (3)

z2(1, t) = S(t) (4)

z2(0, t) = y(t), (5)
where t ∈ [0,+∞) is the time variable, x ∈ [0, 1] is the spatial
variable, y is the output of the system, and S is the control input. The
functions ε1, ε2 belong to C2 ([0, 1]) and satisfy ε1(x), ε2(x) > 0,
for all x ∈ [0, 1], and the functions ci, i = 1, 2, 3, 4 belong to
C1([0, 1]).

Defining the change of variables (see, for example, [3])

χ1(x) = exp


−

 x

0

c1(s)
ε1(s)

ds


(6)

χ2(x) = exp
 x

0

c4(s)
ε2(s)

ds


(7)

χ(x) =
χ1(x)
χ2(x)

, (8)

and the new coordinates

u = χ1(x)z1 (9)

v = χ2(x)z2, (10)
system (1)–(5) is transformed into the following system
ut + ε1(x)ux = γ1(x)v (11)

vt − ε2(x)vx = γ2(x)u, (12)
with
γ1(x) = χ(x)c2(x) (13)

γ2(x) = χ−1(x)c3(x). (14)
The boundary conditions become
u(0, t) = qv(0, t) (15)
v(1, t) = U(t) (16)
v(0, t) = y(t), (17)

where the original control variable satisfies

U = χ2(1)S. (18)

We aim at designing a reference control input U r(t) such that the
output y(t) follows a given reference trajectory yr(t), for t ≥ 0. For
achieving this we need first to construct the reference trajectory
(ur(x, t), vr(x, t)) that satisfies (11), (12), (15), and (17) with
y(t) = yr(t). The trajectory generation problem is solvable when
the initial data (u0, v0) match the reference trajectory, i.e., when
u0(x) = ur(x, 0) and v0(x) = vr(x, 0) (and hence, the initial data
belong to the same space with ur(x, 0) and vr(x, 0)).

Theorem 1. Let yr ∈ C1(R) be uniformly bounded. The functions

ur(x, t) = qyr (t − Φ1(x))+

 x

0

f (ξ)
ε1 (ξ)

yr (t − Φ1(x)+ Φ1(ξ)) dξ

+ q
 x

0
Lαα(x, ξ)yr(t − Φ1(ξ))dξ

+

 x

0
Lαα (x, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 x

0
Lαβ (x, ξ) yr (t + Φ2(ξ)) dξ (19)

vr(x, t) = yr(t + Φ2(x))+ q
 x

0
Lβα(x, ξ)yr (t − Φ1(ξ)) dξ

+

 x

0
Lβα(x, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 x

0
Lββ(x, ξ)yr (t + Φ2(ξ)) dξ (20)

U r(t) = yr (t + Φ2(1))+ q
 1

0
Lβα(1, ξ)yr (t − Φ1(ξ)) dξ

+

 1

0
Lβα(1, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 1

0
Lββ(1, ξ)yr (t + Φ2(ξ)) dξ, (21)

where

Φ1(x) =

 x

0

1
ε1(s)

ds (22)

Φ2(x) =

 x

0

1
ε2(s)

ds (23)

f (x) =


ε2(0)K uv(x, 0), if q = 0
0, if q ≠ 0, (24)

and Lαα , Lαβ , Lβα , Lββ , K uv are the solutions of the following equations

ε2(x)Lβαx − ε1(ξ)L
βα

ξ = ε′

1(ξ)L
βα

− γ2(x)Lαα (25)

ε2(x)Lββx + ε2(ξ)L
ββ

ξ = −ε′

2(ξ)L
ββ

− γ2(x)Lαβ (26)

ε1(x)Lααx + ε1(ξ)Lααξ = −ε′

1(ξ)L
αα

+ γ1(x)Lβα (27)

ε1(x)Lαβx − ε2(ξ)L
αβ

ξ = ε′

2(ξ)L
αβ

+ γ1(x)Lββ (28)

ε1(x)K uu
x + ε1(ξ)K uu

ξ = −ε′

1(ξ)K
uu

− γ2(x)K uv (29)

ε1(x)K uv
x − ε2(ξ)K uv

ξ = ε′

2(ξ)K
uv

− γ1(x)K uu, (30)

with the boundary conditions

Lβα(x, x) = −
γ2(x)

ε1(x)+ ε2(x)
(31)
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