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a b s t r a c t

We consider the switched-affine optimal control problem, i.e., the problem of selecting a sequence of
affine dynamics from a finite set in order to minimize a sum of convex functions of the system state. We
develop a new reduction of this problem to amixed-integer convex program (MICP), based on perspective
functions. Relaxing the integer constraints of this MICP results in a convex optimization problem, whose
optimal value is a lower bound on the original problem value. We show that this bound is at least as tight
as similar bounds obtained from twootherwell-knownMICP reductions (via conversion to amixed logical
dynamical system, and by generalized disjunctive programming), and our numerical study indicates it is
often substantially tighter. Using simple integer-rounding techniques, we can also use our formulation to
obtain an upper bound (and corresponding sequence of control inputs). In our numerical study, this bound
was typically within a few percent of the optimal value, making it attractive as a stand-alone heuristic,
or as a subroutine in a global algorithm such as branch and bound. We conclude with some extensions of
our formulation to problems with switching costs and piecewise affine dynamics.

© 2015 Elsevier B.V. All rights reserved.

1. Switched-affine control

A switched-affine system has the form

xt+1 = Aut xt + but , t = 0, 1, . . . ,

where xt ∈ Rn is the state at time t , ut ∈ {1, . . . , K} is the control
input at time t , and A1, . . . , AK and b1, . . . , bK are given matrices
and vectors. At each time period, the control input selects from
a given finite set of affine dynamics. We assume, without loss of
generality, that (Ai, bi) ≠ (Aj, bj) for i ≠ j. Switched-affine systems
arise in various engineering applications, for example as models of
switched-mode power supplies and power conversion circuits.

The switched-affine control problem is

minimize
T

t=0

gt(xt)

subject to xt+1 = Aut xt + but
ut ∈ {1, . . . , K},

(1)
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where the constraintsmust hold for t = 0, . . . , T −1. The problem
variables are the system states x0, . . . , xT ∈ Rn and the control
inputs u0, . . . , uT−1. The problem parameters are the dynamics
(Ai, bi) for i = 1, . . . , K and the stage cost functions g0, . . . , gT .
We assume the stage cost functions gt : Rn

→ R ∪ {∞} are
convex and extended valued, which allows us to represent convex
state constraints in the stage cost function. We define the state
constraint set as Xt = {x | gt(x) < ∞}, so the objective is infinite
unless xt ∈ Xt holds for t = 0, . . . , T . We can use g0 to encode a
given initial condition, so that X0 = {xinit}, for some xinit ∈ Rn.

The switched-affine control problem (1) is NP-hard in general
(this is proven by Egerstedt and Blondel [1] for a special case),
and can be solved globally only at great computational cost in
the worst-case. However, by reformulating it as a mixed-integer
convex program (MICP), lower bounds on the optimal value can
be obtained by relaxing the integer constraints, and upper bounds
can be obtained by applying an integer-rounding heuristic to the
relaxed solution. These bounds can be used as the basis for a
global solver (using, e.g., branch and bound), or alternatively, the
rounding procedure can be used as a heuristic to produce a good,
if not optimal, sequence of control inputs. The success of both
methods (i.e., the run-time of a global solution algorithm, or the
quality of the heuristic control sequence) depends crucially on the
MICP reformulation (and the tightness of the bounds it produces).
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In this paper,we give a newMICP formulation that achieves bet-
ter bounds than those obtained from other popular reformulation
techniques. Althoughwe focus on the specific problem given in (1),
we give some extensions of our approach to some related problems
in Section 6.

1.1. Previous work

1.1.1. Switched-affine control
Many approaches exist for optimal control of switched systems;

a summary can be found in [2]. Herewemention some particularly
relevant techniques.
Mixed logical dynamical systems. Switched-affine systems are a
special case of hybrid systems, i.e., systems involving continuous
and logical dynamics. A standard approach to solve (1), proposed
by Torrisi and Bemporad [3], is to first convert the switched-affine
system into an equivalent mixed logical dynamical (MLD) system,
which expresses the system using a combination of linear and
binary constraints on the original variables and some auxiliary
variables (see [4] for details onMLD systems). Minimizing a sum of
convex functions of the system states can therefore be expressed
as an MICP. We will call this the MLD approach to solving (1), and
will briefly describe it in Section 4.1.
Disjunctive programming. Problem (1) can be cast as a disjunc-
tive program, i.e., an optimization problem in which the decision
variables must lie in the union of some sets (see [5]). Ceria and
Soares [6] show that minimizing a convex function over the union
of convex sets can be equivalently formulated as an MICP, using
lifted variables and perspective functions. This technique has seen
much application in process engineering (see, e.g., [7]); for some
other applications, see [8]. Several works apply disjunctive pro-
gramming to switched-affine optimal control; the first appears to
be by Stursberg and Panek [9]; we refer to this approach as the GDP
formulation, and we describe it in Section 4.2. Oldenburg andMar-
quardt [10,11] give a detailed account of how to formulate complex
switched dynamic constraints using a disjunctive programming
framework. Disjunctive programming techniques have also been
suggested for deriving mixed logical dynamical systems; see [12].
Several strategies for finding an upper bounds, some with guaran-
teed suboptimality bounds, can be found in thework of Sager, Jung,
and Reinelt [13,14].
Approximate dynamic programming. Wang, O’Donoghue, and
Boyd [15] give a method for obtaining relaxations for several
hard optimal control problems, including switched-affine systems.
The bounds are obtained by maximizing a quadratic approximate
value function, evaluated over some initial state distribution, while
constraining it to be an under-estimator of the true value function
(using a chain of Bellman inequalities).

1.2. Convex optimization

Convex optimization problems can be solved efficiently and
reliably using standard techniques [16, Ch. 1]. In practice, this is
often done by representing the functions involved in terms of a
few standard convex cones, then using a conic optimization solver.
Typical cones used in convex optimization include the positive
orthant, second-order cone, semidefinite cone, exponential cone,
and combinations thereof. Many functions and constraints are
representable in terms of these cones; several examples are given
in [17–20].

Mixed-integer optimization problems that are convex if the
integrality constraints are relaxed are called mixed-integer convex
programs (MICPs). Although mixed-integer convex programming
is NP-hard, these problems can, in principle, be solved using
simple branch-and-bound schemes; see [21] for details. Other

techniques apply specifically mixed-integer linear programs
(MILPs) and, more recently, mixed-integer second-order cone
programs (MISOCPs); specialized solvers capable of handling
MILPs andMISOCPs include the commercial solversMosek, Gurobi,
and CPLEX, as well as ECOS-BB, an extension to the open-source,
embedded second-order cone programming solver ECOS [22].

1.3. Contributions

In this paper, we give a new formulation of (1) as a mixed-
integer convex program, based on perspective functions. We
can then obtain a lower bound on (1) by relaxing the integer
constraints and solving the resulting convex optimization problem.
We show that this lower bound is at least as good as the lower
bound obtained by relaxing the integer constraints of either the
MLD or GDP formulations; our numerical study suggests that
this difference can be substantial. We also show how to combine
our formulation with a simple shrinking-horizon heuristic to get
upper bounds on (1). Again, our numerical study suggests that this
upper bound can be much tighter than the upper bound obtained
using the same shrinking-horizon heuristic with the MLD or GDP
formulation.

Our formulation is of course related to, and derivable from,
several other approaches, although not in simple or obvious ways.
Our formulation is derivable from the standardMICP reformulation
procedure for (convex) disjunctive programs, as given in [6,7].
However, it differs from the ‘‘convex hull’’ approach followed in [9],
which involvesminimizing the original objective function over the
convex hull of the disjunctive constraints. Instead, our formulation
is obtained by first considering an epigraph formulation of (1),
then treating all constraints as disjunctive constraints (even if the
constraint is the same for all disjunctions); only then do we apply
the convex hull relaxation.

Our lower bound can also be derived from the approach of
Wang, O’Donoghue, and Boyd [15] (when modified to apply to
a finite-horizon problem). In particular, if we take a chain of T
Bellman inequalities, and restrict our search to value function
under-estimators that are affine (instead of quadratic), then
the problem of maximizing the value function under-estimator
(evaluated at xinit) is the dual of our formulation.

1.4. Outline

In Section 2, we review some properties of perspectives
of convex functions. In Section 3, we give an alternate MICP
formulation based using perspective functions, and we prove its
equivalence to (1). In Section 4, we review three other approaches
to solving (1): by the standard conversion to a mixed logical
dynamical system, by generalized disjunctive programming, and
by approximate dynamic programming. We then compare these
methods to our perspective-base formulation. In Section 5, we give
an example with numerical results, and in Section 6, we give some
extensions of our method to problems similar to (1).

2. Perspective of a function

Recall that the perspective of an extended-value convex function
g : Rn

→ R∪ {∞} is the function p : Rn+1
→ R∪ {∞} defined by:

p(x, s) =

sg(x/s) s > 0
0 s = 0, x = 0
∞ otherwise.

Crucially, if g is convex, then so is p. (This can be shown by di-
rectly checking Jensen’s inequality for all cases above.) For more



Download English Version:

https://daneshyari.com/en/article/756186

Download Persian Version:

https://daneshyari.com/article/756186

Daneshyari.com

https://daneshyari.com/en/article/756186
https://daneshyari.com/article/756186
https://daneshyari.com

