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a b s t r a c t

We study the regularization problem for linear differential–algebraic systems. As an improvement of
former results we show that any system can be regularized by a combination of state-space and input-
space transformations, behavioral equivalence transformations and a reorganization of variables. The
additional state feedback which is needed in earlier publications is shown to be superfluous. We provide
an algorithmic procedure for the construction of the regularization and discuss computational aspects.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We study linear descriptor systems given by differential–
algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t) + Bu(t) (1)

where E, A ∈ Rl×n, B ∈ Rl×m. The set of systems (1) is denoted
by Σl,n,m and we write [E, A, B] ∈ Σl,n,m. DAE systems of the form
(1) naturally occur when modeling dynamical systems subject to
algebraic constraints; for a furthermotivationwe refer to [1–5] and
the references therein. The system [E, A, B] is called regular, if the
matrix pencil sE − A is regular, that is, l = n and det(sE − A) ∈

R[s] \ {0}.
The functions x : R → Rn and u : R → Rm are usually called

state and input of the system, resp. However, in the general case, u
might be constrained and some of the state variables can play the
role of an input. In the present paper we will take the viewpoint
of the behavioral approach due to Willems [6], see also [7,8].
Within this framework, the variables of the system do not have
the interpretation of states and inputs until an analysis of the
system reveals the free variables. These free variables should then
be interpreted as inputs, since ‘‘they can be viewed as unexplained
by the model and imposed on the system by the environment’’ [9].
This approach obeys the physical meaning of the system variables
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and it may turn out that in the original model the choice of states
and inputs was inappropriate.

The behavior of the DAE system (1) is introduced as the
following set of solutions of (1):

B[E,A,B] := {(x, u) ∈ L1
loc (R; Rn

× Rm) | Ex ∈ AC(R; Rl),

(x, u)satisfies (1) for almost all t ∈ R},

where L1
loc and AC denote the space of locally (Lebesgue)

integrable and absolutely continuous functions, resp. DAE control
systems based on the above behavior have been studied in detail
e.g. in [1].

Nowadays, the modeling of huge industrial problems and com-
plex physical systems is often performed using automatic mod-
eling tools such as Modelica (https://www.modelica.org/). This
approach naturally leads to differential–algebraic systems of the
form (1). Since in the automatically generated models it is quite
common that redundant equations appear and state and input
variables are chosen inappropriately, the system (1) is not regu-
lar in general, while the physical background tells that a regular
model must exist. Therefore, a remodeling, or a regularization, is
often required, see [10].

In the present paper we study the regularization of DAE sys-
tems, which relies on a procedure developed in [10] and revisited
in [11]. In [10] it is shown that, given any DAE system [E, A, B] ∈

Σl,n,m, by a combination of behavioral equivalence transformation,
proportional state feedback and reorganization of variables (due to
a possibly inappropriate initial choice of states and inputs) a new
system [Ereg, Areg, Breg] can be obtained where sEreg − Areg is reg-
ular and has index at most one. In the linear case, explicit trans-
formations and a characterization of the regularized system have
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been obtained in [12]. In the present paper, we improve the results
of [10,12] by showing that an application of state feedback is not
necessary. Furthermore, we derive a numerically stable algorithm
of cubic complexitywhich establishes the regularization of the sys-
tem.

The paper is organized as follows: In Section 2 we introduce
some preliminary concepts and notation and give a precise
problem formulation. The regularization algorithm, which is the
main result of the paper, is presented in Section 3 and proved
to be feasible for any given system. Numerical reliability and the
computational speed of the regularization algorithm are discussed
in Section 4. Section 5 provides a detailed comparison of our
algorithm with the method proposed in [10] and in Section 6 we
demonstrate the regularization algorithm bymeans of a numerical
example. Conclusions are given in Section 7.

2. Preliminaries and problem formulation

In the present paper we use the following notation: R and C
denote the fields of real and complex numbers, resp.; R[s] is the
ring of polynomials with coefficients in R; Rn×m is the set of n × m
matrices with entries in a ring R; On denotes the set of orthogonal
real n × n matrices. A polynomial matrix U(s) ∈ R[s]n×n is called
unimodular, if it is invertible over R[s] or, equivalently, if detU(s)
is a nonzero constant.

The rank of a matrix M ∈ Kn×m, where K = R or K = C,
is denoted by rkM . If M ∈ Rn×m with rkM = r , then, using QR
factorization with pivoting [13], there exists T ∈ On such that

TM =


Σr
0


,

where Σr ∈ Rr×m with rkΣr = r , see also [14]. We will call T
a row compression of the matrix M . Similarly, we call S ∈ Om a
column compression, if

MS = [Σ̂r , 0],

where Σ̂r ∈ Rn×r with rk Σ̂r = r .
The index ν ∈ N0 of a regular matrix pencil sE − A ∈ R[s]n×n

is defined via its (quasi-)Weierstraß form [15,3,4]: if for some
invertible S, T ∈ Rn×n

S(sE − A)T =


sIr − J 0

0 sN − In−r


, N nilpotent,

then ν :=


0, if r = n,
min


k ∈ N0

 Nk
= 0


, if r < n.

The index is independent of the choice of S, T .
Finally, we recall the concept of behavioral equivalence which

has been introduced for general behaviors in [9]. Roughly speaking,
two systems are behaviorally equivalent, if their behaviors
coincide.

Definition 2.1. Two systems [Ei, Ai, Bi] ∈ Σl,n,m, i = 1, 2, are
called behaviorally equivalent, if

B[E1,A1,B1] ∩ C∞(R; Rn
× Rm) = B[E2,A2,B2] ∩ C∞(R; Rn

× Rm),

where C∞ denotes the space of infinitely times differentiable
functions; we write

[E1, A1, B1] ≃B [E2, A2, B2].

In order to obtain a behaviorally equivalent system, it is allowed
that some of the equations in (1) are differentiated (and hence
we require smooth solutions). This leads to a transformation of
the form U( d

dt )(
d
dt E − A)x(t) − U( d

dt )Bu(t) = 0 with some
U(s) ∈ R[s]l×l. Furthermore, since the behaviorsmust coincide (on

C∞) the transformation U(s) must be reversible, i.e., U(s) must be
unimodular. As shown in [9, Thms. 2.5.4 & 3.6.2] this is exactly the
set of transformations that characterizes behavioral equivalence;
this is summarized in the following lemma.

Lemma 2.2. Let [Ei, Ai, Bi] ∈ Σl,n,m, i = 1, 2. Then [E1, A1,
B1] ≃B[E2, A2, B2] if, and only if, there exists a unimodular U(s) ∈

R[s]l×l such that

[sE1 − A1, −B1] = U(s)[sE2 − A2, −B2].

Note that in initial value problems (1), x(0) = x0, where u ∈

C∞(R; Rm) is given, the consistency of the initial value x0 ∈ Rn,
i.e., existence of x ∈ C∞(R; Rn) such that (x, u) ∈ B[E,A,B] and
x(0) = x0, is preserved under behavioral equivalence.

In the present paper we consider the following regularization
problem.

Problem 2.3. For a given system [E, A, B] ∈ Σl,n,m, find a
unimodular matrix U(s) ∈ R[s]l×l, orthogonal state space and
input space transformations T ∈ On, V ∈ Om and a permutation
matrix P ∈ On+m such that

[sE − A, −B]

T 0
0 V


P = U(s)


0 0

sEreg − Areg −Breg


, (2)

where sEreg − Areg ∈ R[s]n̂×n̂ is regular and has index at most one.

Each kind of the transformations in Problem 2.3 have an
interpretation in terms of their physical meaning:

(i) T and V represent coordinate changes in state space and input
space respectively,

(ii) U(s) represents an equivalence transformation which does
not change the behavior of the system,

(iii) P represents a permutation of state and input variables. Here,
we seek a permutation of free state variables with constraint
input variables, so that in the resulting system the free
variables are exactly the input variables. This may be viewed
as a reinterpretation of certain states as inputs and vice versa.

At first glance it may be surprising that (2) in Problem 2.3 does
not read

W (s)[sE − A, −B]

T 0
0 V


P =


0 0

sEreg − Areg −Breg


, (3)

where W (s) ∈ R[s]l×l is unimodular. The reason is that U(s) in
(2) may be easier to compute than W (s) in (3). In fact, we show
in Section 3 that U(s) has degree 1, i.e., it is a matrix pencil, and it
is obtained with cubic complexity. On the other hand, the inverse
W (s) = U(s)−1 may have higher degree and can only be obtained
with quartic complexity in general, see Section 4.

3. Regularization algorithm

In this section we provide a step by step procedure for the
derivation of the regularization of a descriptor system as in (2).

Initialization. Let [E, A, B] ∈ Σl,n,m be given.
Step 1. Compute a row compression S1 ∈ Ol such that S1B =

0
B2


, where B2 has full row rank r . Consider

S1[sE − A, −B] =


sE1 − A1 0
sE2 − A2 −B2


,

where sE1 − A1 ∈ R[s](l−r)×n, sE2 − A2 ∈ R[s]r×n.
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