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A B S T R A C T

A novel matrix completion algorithm based on the iterative application of neural networks is presented. It is
shown that Bayesian regularization provides proper protection against overfitting, more so than early-stopping or
a combination of both. The flexibility to increase the size of the hidden layer provides a better description of
increasingly nonlinear relationships between the known and missing values in the data with a limited loss in
generalization ability. The proposed neural network algorithm provides a more accurate estimation of missing
values than current matrix completion algorithms based on iterative regression approaches or PCA applications
for many datasets with fractions of missing values from 5 to 40%. The neural network algorithm performs
particularly well on datasets where the number of observations significantly exceeds the number of features.

1. Introduction

Matrix completion is the general problem of estimating the missing
values in a dataset from the known values. The presence of missing values
in a dataset is common and can be caused by several factors, such as
hardware failure, human error and data corruption, to name just a few.
When the number of missing values is minimal and the missing values are
distributed randomly, the incomplete observations can be removed to
recreate a complete (but slightly smaller) dataset. However, if missing
values are frequent or concentrated in certain regions of the dataset, the
information loss resulting from the removal of the incomplete observa-
tions may become too significant for subsequent statistical inference, and
estimation of these missing values is required. As such, matrix comple-
tion has a wide spectrum of applications, including new product devel-
opment and product characterization [1], meteorological data [2],
wastewater treatment [3], gene expression profiles [4,5], recommender
systems [6,7], seismic data [8], traffic flow [9], image recovery [10] and
video editing [11].

Matrix completion is generally presented as a rank-minimization
problem. More specifically, a dataset M 2 ℝn � p of rank r<min (p, n)
can be approximated by a matrix Y 2 ℝn � p minimizing the following
optimization problem [12]:

minrankðYÞ (1a)

Subject to Yij ¼ Mij for all ij 2 Ω (1b)

where Ω is the set of known elements ij ofM. For noisy datasets, which is
common in applications such as new product development and product
characterization, each known value contains a noise component of a
magnitude dependent on the precision of the measurement method:

Mij ¼ Aij þ Eij for all ij 2 Ω (2)

where A 2 ℝn � p is the matrix of “true” values and E 2 ℝn � p is the matrix
of noise. The completion of a noisy matrix is a more challenging problem,
given that the underlying signal (A) and noise (E) components are un-
known. To mitigate the impact of noise on the estimation of the missing
values, the equality constraint in the rank-minimization problem (Eq.
(1b)) is generally replaced by an inequality constraint allowing some
level of deviation from the noisy matrix (

��Yij �Mij
�� < δ for all ij 2 Ω,

where δ is the permissible deviation) [13], or the rank-minimization
problem is replaced by a principal component analysis (PCA) applica-
tion [6] or a regression-based approach [14,15].

Recently, Folch-Fortuny et al. [14] developed an iterative
regression-based approach to perform matrix completion of noisy
matrices (Fig. 1). In this approach, observations are removed one-by-one
from the dataset. The observation is separated into two vectors, one
containing the p1 known values of the observation (oI 2 ℝp1 ) and the
other containing the missing values (oD 2 ℝp�p1 ). The rest of the dataset
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is separated into matrices of independent (ZI 2 ℝðn�1Þ � p1 ) and dependent
(ZD 2 ℝðn�1Þ �ðp� p1Þ) features, according to the known and missing values
in the removed observation, respectively. The matrices of independent
and dependent features are used to train a model f, which is then used to
predict the missing values of the removed observation. The accuracy of
the iterative regression-based approach is strongly dependent on the
selection of the model f. Linear mapping with the model coefficients
estimated from the matrices of dependent and independent features
preconditioned with different PCA-based approaches has been investi-
gated. The trimmed scores regression (TSR) approach, where the inde-
pendent variables of the linear map are derived from the scores of the
augmented matrix Z¼ [ZI ZD] and Z is calculated only considering the
weight attributed in each principal component loading to the p1 known
features, was shown to provide accurate results for a number of datasets
[14].

However, the performance of matrix completion by the current iter-
ative regression-based approach is bounded by the strong hypothesis of a
linear map, which can significantly distort the relationship between the

dependent and the independent features. The relationship between the
dependent and independent features depends on the observation
removed from the dataset, and is generally unknown before the appli-
cation of matrix completion. A desirable regression-based matrix
completion algorithm would thus relax the necessity to rely on specific
assumptions about the underlying relationships between the dependant
and independent features and provide enough flexibility to describe a
different, often nonlinear relationship for each observation removed
from the dataset. The significant overfitting problems that easily arises
when using limited parametric nonlinear maps should also be avoided.
As such, we believe that neural networks are well-positioned to improve
the problem of matrix completion with their well-demonstrated ability to
reproduce a variety of linear and nonlinear relationships from the same
neural network architecture (number of hidden layers and neurons per
layer). Furthermore, protection against overfitting can be included in
neural network training, typically in the form of regularization or early-
stopping.

In this work, we propose to combine the iterative regression-based
matrix completion approach of Folch-Fortuny et al. [14] (Fig. 1) with a
mapping process based on neural networks. The proposed neural
network algorithm is detailed in section 2.1. Section 2 also describes the
four datasets considered in this work, as well as current matrix comple-
tion algorithms against which the neural network approach is compared.
In section 3, the contribution of early-stopping and Bayesian regulari-
zation is investigated, the accuracy of the neural network approach is
compared with state-of-the-art matrix completion algorithms, and the
impact of the number of observations on the accuracy of the missing
value estimates is discussed. Finally, section 4 summarises the key find-
ings of this work.

2. Methods

2.1. Proposed approach

The matrix completion approach proposed in this work consists of
introducing a neural network in the model building step of the iterative
regression-based approach developed by Folch-Fortuny et al. [14]
(Fig. 1). The initial estimate of the missing values in the incomplete
dataset was the feature-wise average of the known values. Before the
algorithm was performed, each column (feature) of the dataset was
centered and scaled. During processing, the observations were removed
one-by-one from the dataset and, according to the features known and

Nomenclature

A n� p matrix of “true” values
c cost function of neural network training
E n� p matrix of noise
k size of the neural network hidden layer
M n� p sparse matrix to be completed
Mf n� p matrix of missing value estimates
n number of observations in M
oD 1� (p - p1) vector of missing values in an observation
oI 1� p1 vector of known features in an observation
p number of features in M
p1 number of known features in an observation
PC principal component
PCA principal component analysis
r rank of M
MSE mean squared error
T n� p matrix of missing values estimated during neural

network training
TSR trimmed scores regression without early stopping

TSRE trimmed scores regression with early stopping
VBPCA variational Bayesian principal component analysis
w1 1� (p1 þ 1)k vector of weights connecting the neural

network input and hidden layers
w2 1� (k þ 1)(p - p1) vector of weights connecting the neural

network hidden and output layers
ZD n� (p - p1) matrix of dependent features
ZI n� p1 matrix of independent features

Greek symbols
α hyper parameter in the neural network training cost

function
β hyper parameter in the neural network training cost

function
Ω set of known values ij in the matrix

Subscripts
ij element ij of the matrix
test test

Fig. 1. Illustration of the iterative regression-based approach for matrix
completion developed by Folch-Fortuny et al. [14].
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