Study of the effect of the presence of silver nanoparticles on migration of bisphenol A from polycarbonate glasses into food simulants

C. Reguera a, S. Sanllorente a, A. Herrero a, L.A. Sarabia b, M.C. Ortiz a,∗

a Dept. of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
b Dept. of Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain

ARTICLE INFO

Keywords:
PLS
HPLC-FLD
Bisphenol A
Migration test
Food simulants
Silver nanoparticles

ABSTRACT

The impact that the presence of nanoparticles in food can have on the migration from food contact materials (FCMs) of substances, which occurrence in foodstuffs is regulated, is posed in this paper through a case-study. Migration of bisphenol A (BPA) from polycarbonate glasses into aqueous food simulant B (3% acetic acid, w/v) and simulant D1 (50% ethanol, v/v), both in the absence and presence of silver nanoparticles is tested. The analysis of the amount of BPA released into the food simulants is conducted by comparing population results instead of using the classical location and scatter estimates. β-content tolerance intervals are used to model the statistical distribution of BPA migrated from the polycarbonate glasses. Experimental measurements are performed by HPLC-FLD, and partial least squares regression models are then fitted to determine the concentration of BPA. The analytical procedure fulfils the trueness property. The capability of detection of the method is between 1.7 and 2.3 μg L−1 when the probabilities of false positive and false negative are fixed at 0.05. Using β-content tolerance intervals, in 90% of the specimens of a population of polycarbonate glasses, the amount of BPA migrated into simulant B in the presence of AgNPs is 13.34 μg L−1, at least twice the quantity that migrated in the absence of them.

1. Introduction

Nanotechnology in food industry concerns with, among other things, developing food products and packaging materials with new and improved properties. Many naturally food occurring substances exist at the nanoscale, but new food products with prolonged shelf-life, novel tastes and textures, health benefits, etc., are being developed and engineered in this field [1–3]. The high surface area to mass ratio of nano-sized substances can lead, for example, to a reduction in the use of additives since small amounts may provide a high level of functionality or because of their ability to be disperse uniformly in foodstuffs.

On the other hand, substances may be added in food contact materials (FCMs) in the form of nanoparticles to increase the functionality of such materials, which includes improved barrier properties and better temperature performance [4–6]. The antimicrobial and antifungal food packaging properties of silver nanoparticles (AgNPs), for example, are well known [5,7]. For this reason, AgNPs have been used to prepare packaging containing antimicrobial agents in order to extend the product life, despite the possible health risk of exposure to nanoparticles [8,9]. The use of AgNPs in food plastic containers is not allowed in the European Union (except for certain silver zeolites and rubber seals) [10], but it is usual in markets outside Europe; AgNPs are the most widely inorganic nanoparticles employed for antimicrobial packaging [5]. Nanoparticles may reach the food contact surface and release into the food [11]; several studies on the migration of silver from FCMs can be found in the literature where silver speciation and quantification of the fraction migrated in the silver nanoform are performed [12–14]. However, it seems that the overall conclusion from the analysis performed so far is that consumer exposure is negligible [14] because the concentrations of AgNPs found are very low.

Nanoparticles may be present in foods as a consequence of the manufacture and processing of food or because they are transferred from the FCMs. The presence of nanoparticles in food that comes into contact with FCMs might have effect on the migration of other substances such as non-intentionally added substances (NIAS) that may be present in the FCM as a result of reaction or degradation processes that take place in that material [15]. In fact, the reactivity of many nanoparticles (metallic and magnetic nanoparticles, carbonaceous and silicon nanomaterials and polymer-based nanosorbents) has led to their increasing use as sorbents in sample preparation [16–18].
The aim of this work is to study the impact that the presence of nanoparticles in food could have on the migration behaviour (from FCMs) of substances such as bisphenol A, formaldehyde, aromatic amines or phthalates, the occurrence of which in foodstuffs is regulated [10]. As an example to illustrate the procedure, the issue is addressed through a case-study, to assess if the release of bisphenol A (BPA) from polycarbonate (PC) infant feeding bottles [21]. It is used as a monomer in the manufacture of storage containers or microwave ovenware. BPA displays estrogenic properties and acts as an endocrine-disrupting agent, which constitutes a risk to human health; in fact, its epigenetic properties have been confirmed [22,23].

The determination of BPA in food and food simulants released from FCMs has been reviewed in many papers [20,24–26]; analytical methods used include liquid or gas chromatography coupled to mass spectrometry [27], excitation-emission fluorescence spectroscopy [28], etc. European standard EN 13130-13 [29] specifies a method for the determination of BPA in some food simulants by HPLC-UV, which is applicable at a minimum level of 200 μg per kilogram of food simulant.

In the present work, to study the effect of AgNPs on migration of BPA, clear PC glasses are subjected to different test conditions under which the residual monomer in the polycarbonate could migrate into simulant, thereby releasing BPA. Two food simulants, simulant B (3% acetic acid, w/v) and simulant D1 (50% ethanol, v/v), are used to carry out the migration tests; these food simulants represent acidic (with pH 4.5 or less) and fatty (amphiphilic and milk) foods, respectively [19].

The concentration of BPA released into the simulates is analysed on a population basis rather than on sample measurements because, in practice, it is impossible to carry out a migration test on the same glass in the presence and absence of nanoparticles; the validity of classical location and scatter estimates may be not clear in this case. β-content tolerance intervals [30–32] are used to model the statistical distribution of BPA migrated from the PC glasses into the food simulants. The authors in Ref. [33] already has stated that the migration can be very different from one glass to another.

Experimental measurements are performed by HPLC-FLD, analytical method that makes it possible to reach around 1–2 μg L⁻¹ of BPA, well below the specific migration limit in food simulants indicated above, levels necessary in this work given the low released quantities. The determination of BPA is carried out by multivariate calibration through partial least squares (PLS) regression.

Table 1

<table>
<thead>
<tr>
<th>Simulant</th>
<th>Temperature (ºC)</th>
<th>Time (h)</th>
<th>AgNPs</th>
<th>Experiment</th>
<th>Model</th>
<th>Latent variables</th>
<th>X-block explained variance (%)</th>
<th>Y-block explained variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>74</td>
<td>24</td>
<td>No</td>
<td>Experiment_1</td>
<td>1</td>
<td>1</td>
<td>82.59</td>
<td>98.98</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>24</td>
<td>No</td>
<td>Experiment_2</td>
<td>3</td>
<td>1</td>
<td>79.26</td>
<td>99.25</td>
</tr>
<tr>
<td>D1</td>
<td>70</td>
<td>10</td>
<td>No</td>
<td>Experiment_3</td>
<td>5</td>
<td>2</td>
<td>75.28</td>
<td>99.32</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>10</td>
<td>No</td>
<td>Experiment_4</td>
<td>7</td>
<td>2</td>
<td>77.18</td>
<td>99.47</td>
</tr>
</tbody>
</table>

2.2. Instrumental

Analyses are carried out on an Agilent 1260 Infinity HPLC system (Agilent Technologies, Santa Clara, CA, USA) that consists of a quaternary pump VL (G1311C), standard autosampler (G1329B), thermostated column compartment (G1316A) and fluorescence detector (G1321B). The chromatographic column used is a Kinetex® C18 100A (150 mm length × 4.6 mm i.d. 5.0 μm particle diameter) column (Phenomenex, Torrance, CA, USA). A P-Selecta model 210 thermostatically controlled oven is used to incubate the test samples.

2.3. Migration tests

Migration tests are carried out using two aqueous food simulants, simulant B (3% acetic acid, w/v) and simulant D1 (50% ethanol, v/v). Different temperatures and contact times are assessed for the two food simulants, both in the presence and absence of AgNPs (see Table 1). Migration experiments are performed by glass filling with simulant D1 at 74 ºC for 24 h (Experiment_1 and Experiment_1NP), in the absence and presence of AgNPs, respectively, with food simulant B at 100 ºC for 24 h (Experiment_2 and Experiment_2NP), with simulant D1 at 70 ºC for 10 h (Experiment_3 and Experiment_3NP), and with simulant B at 100 ºC for 10 h (Experiment_4 and Experiment_4NP). That is, a total of eight migration experiments are carried out, four of them in the presence of AgNPs (those labelled Experiment_“NP” and the other four in the absence of them. A population of 30 PC glasses is considered for each experiment. In most cases, glasses filled with simulant containing AgNPs and with just simulant are intermingled in the oven under the same migration conditions. Each migration test is performed by filling the PC glasses to within 0.5 cm from the top with food simulant (a volume of 180 mL) and putting them inside the oven in the darkness at a certain temperature during a