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Abstract

Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of sys-
tems with long-range interaction and long-term memory function, we consider two different applications of the action prin-
ciple: generalized Noether’s theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the
form of continuity equations that consist of fractional time–space derivatives. Among applications of these results, we con-
sider a chain of coupled oscillators with a power-wise memory function and power-wise interaction between oscillators. In
the second case, we consider an example of fractional differential action 1-form and find the corresponding Hamiltonian
type equations from the closed condition of the form.
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1. Introduction

Different physical phenomena such as anomalous transport or random walk with infinite moments [1,2],
dynamics of porous media [3,4], continuous time random walk [5–7], chaotic dynamics [8] (see also reviews
[9,10]) can be described by equations with fractional integro-differentiation. Despite of fairly deep and com-
prehensive results in fractional calculus (see [11–14]) a possibility of their applications to physics needs to
develop specific physical tools such as extension of fractional calculus to the areas as multi-dimension
[11,17], multi-scaling [15,16], variational principles [18,19].

In this paper, we concentrate on two problems important for numerous physical applications: conservation
laws and Hamiltonian type equations, both obtained from the corresponding fractional action principles.
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In Section 2, we derive the Noether’s theorem for a Lagrangian that includes non-local space–time densities.
The Noether’s theorem was also discussed in [23,24]. Our new derivation shows in an explicit way how frac-
tional derivative in time emerges from the specific type of the memory function, and how fractional derivative
in space is related to a specific long-distance potential of interaction (Section 3.) In Section 4, these results are
applied to a chain of nonlinear oscillators that is a subject of great interest in statistics and dynamics [25,26].
Finally, at Section 5, we derive a specific case of fractional Hamilton’s equations. Different steps in this direc-
tion were performed in [29–31]. We consider the Lagrangian density as a functional without fractional deriv-
atives but, instead, the differential 1-form has fractional differentials. Some examples are given for this type of
systems.

The main feature of this paper is the consideration of fractional type differentials or derivatives in both
space–time coordinates.

2. Noether’s theorem for long-range interaction and memory

2.1. Action and Lagrangian functionals

Let us consider the action functional

S½u� ¼
Z

R
d2x
Z

R
d2yLðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ; ð1Þ

where x ¼ ðt; rÞ, t is time, r is coordinate, and y ¼ ðt0; r0Þ, ouðxÞ ¼ ðotuðt; rÞ; oruðt; rÞÞ. The integration is carried
out over a region R of the two-dimensional space R2 to which x belong. The field u(x) is defined in the region R

of R2. We assume that u(x) has partial derivatives

o0uðxÞ ¼ ouðt; rÞ
ot

; o1uðxÞ ¼ ouðt; rÞ
or

;

which are smooth functions with respect to time and coordinate. Here LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ is generalized
density of Lagrangian. If

LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ ¼LðuðxÞ; ouðxÞÞdðx� yÞ; ð2Þ

then we have the usual action functional

S½u� ¼
Z

R
d2xLðuðxÞ; ouðxÞÞ:

The variation of the action (1) is

dS½u; h� ¼
Z

R
d2x
Z

R
d2y

oL

ouðxÞ hðxÞ þ
oL

oðoluðxÞÞ olhðxÞ þ oL

ouðyÞ hðyÞ þ
oL

oðoluðyÞÞ olhðyÞ
� �

; ð3Þ

where l = 0,1, ol = o/oxl and

L ¼LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ

and h(x) = du(x) is the variation of the field u. The variation (3) can be presented as

dS½u; h� ¼
Z

R
d2x
Z

R
d2y

oLs

ouðxÞ hðxÞ þ
oLs

oðoluðxÞÞ olhðxÞ
� �

; ð4Þ

where

Ls ¼LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ þLðuðyÞ; uðxÞ; ouðyÞ; ouðxÞÞ:

We can define the functional

L½x; u; ou� ¼ 1

2

Z
R

d2yLs; ð5Þ
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