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A B S T R A C T

Using an array of sensors with well calibrated but different tuning curves, it is possible to appreciate a wide range
of stimuli. In this work, we first revisit the statistical estimation of the stimuli concentrations given the responses
of a sensor array, discussed in Sanchez-Montanes & Pearce [18]. Since it is not a typical regression problem, the
Bayesian concept is adopted to develop an estimation method by elucidating the dynamic and uncertain nature of
the environment-dependent stimuli with a proper choice of the probability distribution. Other studies confirm
that the proposed method can demonstrate a superior performance in terms of accuracy and precision when
compared to the popular frequentist methods in addition to the theoretical soundness it enjoys as a statistical
estimation problem. Under the proposed framework, the design optimization of an artificial sensory system is also
formulated using the expected Bayes risk as an objective function to minimize. The same approach may be equally
applied to any sensory system in order to optimize its performance within a population of sensors. Finally,
illustrative examples are provided to describe how the proposed method can be applied for the optimal config-
uration of a sensory system for a given sensing task.

1. Introduction

A chemical olfactory system is a sensor array consisting of hundreds
of olfactory receptor neurons. Generally, these receptor neurons do not
exhibit specificity to any single chemical compound but rather provide
varying levels of response to multiple compounds. The precise mecha-
nism for olfactory perception remains still unclear but the aggregate re-
sponses from a sensor array can provide the fundamental chemical
information to detect tens of thousands of unique chemical vapors. By
combining non-specific, general-purpose sensors with well calibrated but
different tuning curves, it is possible to distinguish a wide range of
stimuli or achieve a given sensing task without striving to develop fully
selective or specific sensors to each chemical analyte [4]. Hence, sensor
arrays are often proposed as potentially powerful and relatively inex-
pensive methods to characterize complex chemical mixtures.

Moreover, using information theoretic approaches, neural receptor
systems have been explored in order to understand how these systems are
structured, how the structure informs chemical recognition capability,
and what the resulting implications are when designing a sensor-based
chemical detection system [1,6]. Despite these efforts, the literature
and application of non-specific sensor arrays for general-purpose

chemical detection present general disappointment upon implementa-
tion. Even though such arrays have been reported frequently and have
been the subject of numerous reviews over the past decades, relatively
few instances of successfully commercialized devices exist to date. One
reason is because the research community has mainly focused on the
development of individual sensors or on the application for which the
sensor array is to be used without considering the design and evaluation
issues of sensor arrays. Consequently, design, optimization, and imple-
mentation of sensor arrays still remain time-intensive and costly, leading
to sensory systems which tend to underperform when fielded, compared
to their laboratory performance.

In this work, we revisit the statistical estimation problem of chemical
stimuli given the responses of a sensor array, discussed in Ref. [18]. The
concept of Bayesian analysis is adopted to develop an estimation method
by explaining the dynamic and uncertain nature of the
environment-dependent stimuli through a choice of the prior distribu-
tion. Under the proposed framework, the optimal configuration of an
artificial sensory system is then discussed using the expected Bayes risk
as a suitable objective function to characterize the performance of the
sensory system. The proposed approach is generalizable and could be
applied to other sensory systems for the stimuli estimation and/or the
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optimal sensory system designs. The rest of the paper is organized as
follows. Section 2 provides the model preliminaries and assumptions,
and the formal model based on the Bayesian framework is developed in
Section 3. The estimation of analyte concentrations is discussed in Sec-
tion 4 while Section 5 addresses the optimal design of a sensory system
using the expected Bayes risk. Two illustrative examples are provided in
Section 6 to describe how the proposed method can be applied for the
optimal configuration of a sensory system. Finally, Section 7 concludes
the paper.

2. Preliminaries

Here we consider a system or an array of chemical vapor sensors in
which each sensor is associated with certain parameters that control the
response characteristics of the receptor to various chemical vapors. These
parameters, denoted by the vector θ, define the tuning curve to the
stimuli and need to be estimated to maximize the predictive power of the
sensory system to different analytes. More specifically, let Y denote a
vector of the (random) responses from a sensory system under consid-
eration with a given set of the analyte concentrations, denoted by the
vector x, it is exposed to. Then, the following model describes the
functional relationship between Y and x.

Y ¼ hðθ;x; εÞ; (1)

where hð⋅Þ expresses an appropriate model or system to predict Y from x
with the tuning provided by the parameters θ. The associated model
errors are captured by the random vector ε whose dimension is equal to
that of Y. Let the dimensions of Y and x be m and n, respectively. In case
one considers an additive error model, Eq. (1) becomes

Y ¼ h�ðθ�;xÞ þ ε; (2)

where θ� is a subset of θ so that the parameters concerning the spread or
dispersion of Y are associated with ε only. When ε is a white noise,
h�ðθ�;xÞ in Eq. (2) describes the expected or mean responses of the
sensory system given x ðviz:;E½Y jx� ¼ h�ðθ�;xÞÞ. Since the sensory system
may be composed of non-specific or general purpose sensors, the ele-
ments of Y may be correlated and their linear dependencies are dictated
by the variance-covariance structure of ε, expressed as the m�m sym-
metric, positive definite matrix Σ. Let us further assume that the proba-
bility distribution of ε follows a multivariate normal (or Gaussian)
distribution with zeromeans, which is a reasonable and popular choice to
describe scientific experimental errors. Then, hY jxi naturally follows a
multivariate normal distribution with the mean vector specified by
h�ðθ�;xÞ and the variance-covariance matrix specified by Σ.

As noted in Ref. [18], by using an array of the sensors, each with
different tuning curves, one can implement a sensory system that can
appreciate a wide range of stimuli with relatively few sensors (i:e:,
m � n). In order to achieve this goal, the model parameters θ� and Σ need
to be estimated with high accuracy (viz:, low bias) and high precision
(viz:, low variance) based on an observed i:i:d: random sample of ðY;xÞ.
There are a number of well established statistical inferential tools
available to chemometricians to estimate these parameters. These
include but are not limited to the ordinary/weighted/generalized least
squares (LS) methods, the method of moments (MOM), the (penalized)
maximum likelihood methods (MLE), the EM algorithm, the Jackknife
methods, the Monte Carlo simulation based methods, the bootstrap
methods, the LASSO and ridge regression methods, the latent variable
regression (LVR) methods, the sliced inverse regression (SIR) methods,
the principal component regression (PCR) methods, the partial least
squares (PLS) regression methods, the partial robust M-regression, the
classification trees, and even the artificial neural networks (ANN), the
support vector machines (SVM), and the ensemble approaches.

There are even several techniques to mitigate the problems associated
with small sample sizes when they produce inadmissible estimates such

as out-of-bounds solutions or cause non-convergence of some methods.
These include the restricted maximum likelihood (REML) estimation
with finite sample corrections [9], the Kenward-Roger standard error and
degree of freedom corrections [12,13], and the Skene-Kenward correc-
tions [19,20]. By virtue of these sophisticated statistical techniques, here
we assume that these critical model parameters were well calibrated,
passed rigorous goodness-of-fit tests, and cross-validated through a series
of lab and field tests of the sensory system under consideration, rendering
the estimation errors practically negligible. In other words, the sensor
response functions to the library of target chemicals are known a priori. It
is because the ultimate goal of this modeling process is not about pre-
dicting the sensor responses given the analyte types and concentrations
but the exact opposite, which is about estimating the analyte types and
concentrations given the responses of the sensor array (i:e:, hXjyi).
Depending upon the tuning curves of the individual sensor elements, the
accuracy of the overall sensory system in estimating the stimulus will
vary greatly in addition to the range of stimuli that may be appreciated.

3. Bayesian-based model

Needless to say, this is not a typical regression problem which usually
aims to estimate E½Y jx�. In addition, since the stimulus population and
their respective concentrations can vary greatly from environment to
environment the sensor array is exposed to, the covariate vector x cannot
be treated as static parameters to be estimated like in Ref. [18]. Rather,
its dynamic and uncertain nature has to be elucidated in the model via a
proper choice of its probabilistic distribution (i:e:, prior). For the efficient
estimation of the unknown stimuli given an observed set of the sensory
responses, here we adopt the concept of the random effects or the popular
Bayesian framework by treating the unknown stimuli vector as a random
vector X. We also express the prior historical information, the experts'
opinions or beliefs about the stimuli through a distribution function of
choice, denoted by fXðx;ψÞ with predetermined hyperparameters ψ.
Then, by the Bayes' theorem, the (posterior) probability distribution
function of hXjyi is expressed as

fXjYðxjy; θ;ψÞ ¼ fYjXðyjx; θÞfXðx;ψÞ
∫ xfYjXðyjx; θÞfXðx;ψÞdx; (3)

where fY jXðyjx; θÞ is the joint distribution function of hY jxi or the like-
lihood function of θ while the denominator is called the marginal like-
lihood. Based on our previous assumption, fYjXðyjx; θÞ is the joint density
function of the multivariate normal distribution with the mean vector
specified by h�ðθ�;xÞ and the variance-covariance matrix by Σ.

As shown in Eq. (3), the posterior distribution is a combination of the
prior (determined by the researcher) and the likelihood (determined by
the data). The contribution of these two quantities to the posterior is not
equal though. With more sensory responses (i:e:, m >> n), the likelihood
is given much more relative weight in calculating the posterior for the
unknown stimuli [21]. This may seem trivial but it can have enormous
implications when the number of sensors is small as the posterior dis-
tribution is highly reliant on how the prior was specified. When the in-
formation contained in the likelihood is relatively small due to a limited
number of the sensory responses, the prior will play a key role in the
posterior for estimating the stimuli and each additional piece of infor-
mation will have a pronounced impact. Thus, it is necessary to include
external information in the form of informative (or subjective) priors. For
instance, one might need to consult application-specific experts,
meta-analyses, or review studies in the area of interest to obtain infor-
mative, accurate priors that can meaningfully contribute to the posterior
distribution of X. Previous knowledge or information about the envi-
ronment the sensor array is exposed to can also be incorporated in the
prior. Specifying the priors of X based on expert opinions or previous
studies can potentially improve the inferential performance since it al-
lows to base results on more information than what is strictly provided in
the sensory responses, which is especially helpful with small data sizes.
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