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A B S T R A C T

We report the use of a soft sensor ensemble based on recursive partial least squares with a large number of
overlapping models. The proposed method uses process memory attenuation in the ensemble by varying the
number of training samples included in each model, while always including the most recent samples, which are
usually the most relevant for prediction of new samples, and also ensures that no local models are invalidated due
to drift. To achieve state partitioning of the process data, covariance-based variable selection is performed on each
of the model regions to ensure that only variables most relevant to the dominant process state are included in each
of the local models. This approach yields a distribution of predictions from the models, permitting a prediction of
the target property from the summary statistics of the observed prediction distribution. The effectiveness of the
proposed method is demonstrated by testing against a conventional global soft sensor as well as a state-localized
soft sensor, both with and without variable selection, on two soft sensing applications developed from real in-
dustrial processes employing various model updating frequencies. Results from the experiments demonstrate that
the proposed method tends to outperform a global soft sensor in most cases, and is highly competitive with the
compared state-localized soft sensor, indicating that the proposed method achieves accurate state partitioning.

1. Introduction

Soft sensors have become ubiquitous in the chemical industry due to
their ability to allow real-time estimation and monitoring of certain
process variables that have typically required an offline laboratory
analysis by modeling those process variables in terms of more readily
measured, common process diagnostic variables such as pressure, tem-
perature and viscosity. A soft sensor is best suited for predictive control in
situations where the analysis has a delay (e.g., with gas chromatography)
or in other applications where the required offline analyses to determine
the process variable cannot be completed at a frequency high enough to
guide real-time process control decisions. For example, a soft sensor is
suited to situations where a sample taken from a process needs time-
consuming workup prior to a spectroscopic analysis. The models
comprising soft sensors typically require regular maintenance and
updating due to changing process dynamics and drifts which can quickly
invalidate the underlying relationships [1]. Common strategies for
dealing with these changes is to use a model that can be adapted to the
changing process conditions by employing an autoregressive structure,
for instance one using autoregression with exogenous inputs (ARX) [2,3],
one based on a recursive regression approach [4,5], or by using various

moving-window models [6,7].
Much of the recent research into soft sensors has focused on temporal-

localization or spatial-localization of the process data, also referred to as
state partitioning [5,8,9]. The goal of the localization is to either
approximate local regions in the data as linear or to characterize local
regions in the data as distinct process states. Kernel density estimation,
distance and classification metrics, or model-based clustering methods
can then be used to determine probabilities that the new sample belongs
to a specific process state, followed by weighting the predictions from all
of the models. A somewhat analogous approach is the use of just-in-time
(JIT) learning [10], sometimes called lazy learning, in which a similarity
metric is used to select historical process samples to create a model for a
property describing the new sample. An issue with these localization
approaches is that models representing older states often have very low
predictive performance on new samples due to the changing dynamics of
the process and drift in the process diagnostic sensors. Updating older
models with information from the new samples will help ensure that no
models become invalid, but this updating is contrary to the purpose of
modeling the states separately because, with an update, information
pertinent to the most recent state propagates across all of the process
state models, which were specifically built to describe the property
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relationship in distinct states. JIT learning can have similar issues, in that
the historical samples chosen for construction of the new model may
belong to various process states, or, alternatively, the historical samples
chosen may not fully describe the current process state.

To address these issues, we propose a new paradigm for modeling
relevant process states in soft sensing applications, as well as selecting
samples that belong to a process state. To handle the general issue of
models describing older process states and potentially not selecting the
correct historical samples to describe the current process state, we first
suggest a method that uses only those models that include the most
recent samples, because these models generally have the highest pre-
dictive accuracy for the target (response) variable. Instead of performing
a typical state partitioning of the data with some type of temporal or
spatial localization, we construct an ensemble of models with varying
window sizes, with the aim of establishing process memory attenuation
in the ensemble. By varying the number of historical samples in each
individual model, only the memory in each individual model is altered,
so we also account for the differing covariance structure of the models
defining an empirical process state by performing a covariance-based
variable selection on each of the models using the CovSel algorithm
[11]. Data collected over different time periods but describing the same
process state should yield a selection of the same, or very similar, sets of
variables. Again, this approach is distinct from typical state partitioning
methods used elsewhere, since each process state is defined with respect
to the most recent samples to give an ensemble of models that should all
be suited for prediction on the incoming samples and are all simulta-
neously updated to account for drifts in the process, whether from sensor
drifts or from dynamic changes in covariance structure. In this report, we
have applied the framework described above to the recursive partial least
squares approach for modeling dynamic processes, so we call this method
highly-overlapped recursive partial least squares (HORPLS).

The remainder of this report is structured as follows: in Section 2, we
review the methods utilized in this work, namely partial least squares,
recursive partial least squares, the CovSel algorithm for variable selec-
tion, and we provide a description of our proposed method. We also
briefly discuss other state partitioning methods applied to soft sensing. In
Section 3, the experimental details, computational information, and de-
scriptions of analyzed datasets are given. Section 4 compares the per-
formance of HORPLS, RPLS, and a localized method based on clustering
via a Gaussian mixture model paired with local RPLS, all tested with and
without variable selection. The conclusions of the work are given in
Section 5.

2. Background

2.1. Notation

We use bold capital letters (e.g., X(n�m)) to denote a matrix, partic-
ularly a matrix of predictors, where the n rows represent samples and the
m columns represent predictor variables defined on a set of process
sensors. Column vectors are denoted by a lowercase, bold letter (e.g.,
y(n� 1)), transposition is indicated by a superscript T (i.e. XT

(m� n),
yT(1� n)), and matrix inversion is represented by a superscript �1 (i.e.,
(XTX)�1

(m�m)). Scalar quantities are denoted by an italicized letter (e.g.,
a(1� 1) or A(1� 1)).

2.2. Recursive partial least squares

Partial least squares (PLS) regression is the basis for the modeling
methods discussed below, but because the method is well-established,
only a brief overview of the method is presented here. More detailed
treatments of the subject, for instance the classic tutorial by Geladi and
Kowalski [12], are available elsewhere.

In linear regression, a response Y(n� p) is modeled as a function g of
X(n�m):

Y ¼ gðXÞ ¼ XBþ E (1)

where p is the number of response variables, B(m� p) is a matrix of
regression coefficients and E(n� p) is a residual matrix. If the covariance
matrix of X is ill-conditioned, this relation cannot be directly modeled
with the ordinary least squares approach, and a regularized regression is
required. Even if the covariance matrix of X is well-conditioned,
modeling can often be improved by regularizing the regression. In the
case of PLS, the regression is regularized by excluding specific sources of
variation in the data by first performing a latent decomposition of the X
and Y data:

X ¼ TPT þ EX (2)

Y ¼ UQT þ EY (3)

where T(n� v) andU(n� v) are, respectively, the X and Y scores, and P(m� v)
and Q(p� v) are, respectively, the X and Y loadings, and EX(n�m) and
EY(n� p) are residual matrices. Here, v is the number of retained latent
variables, such that v�min(n, m, r), where r is the rank of X, thereby
giving a low-rank representation of X and regularizing the regression
solution. After the first vector of X and Y scores have been found, they are
linked by the so-called inner PLS linear relation:

u1 ¼ β1t1 þ eu (4)

where β1 is the linear regression coefficient minimizing the sum of the
squared residuals eu. Once the first set of scores and the inner relation are
found, X and Y are deflated:

EX;1 ¼ X� t1p1
T (5)

EY;1 ¼ Y� β1t1q1
T (6)

and the algorithm proceeds again with the residual matrices. For pre-
diction, the new samples Xnew are projected into the score space to find
Tnew and a rearranged form of equation (6) is used to estimate the
response matrix bY.
bY ¼

Xv
i

βitnew;iqiT (7)

PLS regression is useful in situations where a regularized regression
solution is required, but the method is not robust to dynamics in the
covariance structure of the data. To deal with the dynamic changes in the
relationship between predictor and response variables that commonly
occur in time-varying processes, Helland et al. [13] reported a recursive
version of the PLS algorithm to permit on-line updating of a PLS model.
Qin [4] derived a computationally more efficient method for recursively
updating a PLS model with a new sample xtþ1 and a new response ytþ1 by
using the following equations:

X ¼
�
λPT

t

xtþ1

�
(8)

Y ¼
�
λCtQT

t

ytþ1

�
(9)

where λ is a forgetting factor that determines the extent to which older
samples influence the updated model, and C¼ diag(β1, …, βr). Updating
can also be done in batch-wise fashion if multiple new samples are
received and are available for updating simultaneously.

Mean and variance updating of the data [14], which can be used for
adaptive autoscaling of the predictors, can easily be combined with any
updating approach to improve adaptation of the model. Assuming that
the mean sample of the set of responses in X at time t is dt, the variance of
those sensor responses at time t is σt [2], and that at time t we have
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