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A B S T R A C T

Based on assessment of randomized sub-model populations generated through reweighted binary matrix sampling
(BMS), an innovative variable selection strategy for PLS regression model, called alternate deflation and inflation
of search space (ADISS) is proposed. Normalized regression coefficients of best PLS sub-models population is used
to formulate the weight vector for re-weighted BMS. Unlike the most existing algorithm, ADISS alternatively shifts
between forward selection (inflation) and backward elimination (deflation) of variable space, minimizing the risk
of accidental loss of informative variables. Compared with methods such as competitive adaptive reweighted
sampling (CARS), variable iterative space shrinkage approach (VISSA), or Monte Carlo uninformative variable
elimination (MC-UVE), proposed method showed lower cross-validation or prediction error for two different
benchmark NIR data sets. ADISS frequently selects nearly the same sets of variables across multiple independent
runs, that signifies stability of the output. The unsupervised execution, termination and projection of final variable
set from the algorithm is important advantage while considering for large scale data.

1. Introduction

Multivariate calibration models are increasingly being adopted to
extract quantitative or qualitative information from highly collinear
spectroscopic data of complex biological and environmental samples
[1–3]. Partial least squares (PLS) regressions models provides excellent
selectivity and prediction accuracy even when contribution of interfering
substances remains unpredictable or cannot be accounted in priori [4,5].
However, model developed with large-number of variables from rela-
tively fewer samples, commonly referred as “large p small n problem”,
can deteriorate the PLS regression [6–8]. Removal of uninformative
variables while keeping some “useful redundancy” is the key to have a
parsimonious model with improved prediction efficiency and interpret-
ability [9].

Variable selection strategies in PLS either identifies variable subset
directly from regression output (filter method), or pipe-back the selected
subset into refitting algorithm (wrapper-methods), or integrate variable
selection strategy into core of PLSR algorithm (embedded method) [10,
11]. Though faster and easier to implement, variable subset selection in
filter methods is somewhat arbitrary without assessing their final per-
formance. On other hand, the wrappers methods select variables in an
iterative way while evaluating performance (e.g. cross validation error)
of the PLS models based a randomized population [11]. A large number

of randomized wrappers based variable selection strategies has been
proposed in this decade such as, uninformative variable elimination
(UVE) [12], Monte Carlo based-UVE MC-UVE [13], recursive weighted
PLS (rPLS) [14], competitive adaptive reweighted sampling (CARS) [15],
variable iterative space shrinkage approach (VISSA) [16], variable
combination population analysis (VCPA) [17], sub-window permutation
analysis (SPA) [18], iteratively retaining informative variables (IRIV)
[19]. Strategic comparison among few of those algorithms have also been
reviewed, though albeit non-exhaustively [10,20].

The fundamental framework across those randomized wrappers
methods remains the same, i.e. generation of a population of sub-models,
followed by formulation of weight vector (from the best performing
subsets) for next round of weighted resampling. Performance of these
algorithm differs in the way the weight vector is created, used in
resampling, or the variable space is altered. For example, use of
normalized PLS regression vector to formulate the weight in CARS should
be more effective in capturing the relative importance of the variables
than the binary weight scheme in VISSA, where equal importance is
given to each of the retained variables in a sub-model [14,19]. However,
weighted Monte Carlo re-sampling in CARS selects some variables more
frequently than others, resulting in distribution of variables in population
different from the original weight vector [19]. UVE, MC-UVE, SPA or
CARS are computationally efficient, but they select the variables
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individually ignoring their combination effect.
The low weight variables are quickly (and forcibly) discarded based

on an exponentially decreasing function in VCPA or CARS during initial
iterations [17]. In VISSA, non-improvement of performance for the best
sub-models across iterations triggers a softer space shrinkage, where
variables except those in the best sub-model are eliminated from next
round [16]. However, there is no way to get back any variable once
irreversibly eliminated at initial phase of the algorithm, even if it could
be a part of globally optimal model.

Based on the core idea of binary matrix sampling (BMS), a novel
variable selection strategy, called Alternate Deflation and Inflation of
Search Space (ADISS) is proposed. In line of VISSA, when performance of
the best model stops improving in iterations, the variable space is alter-
natively deflated or inflated in ADISS. During deflation, all columns of
BMS except those best sub-model variables from last iteration are forced
zero. In inflation cycle, variables in best sub-model are always retained.
Unlike unidirectional space shrinkage in VISSA, this approach protects
against inadvertent loss of informative variables.

In this work, application of ADISS algorithm for selection spectral
variables in PLS regression model was investigated, and results were
compared with few commonly encountered strategies. Though applied
for spectral data set, the approach can be incorporated into any multi-
variate problems.

2. Theory and algorithm

2.1. Brief introduction of the existing methods

The algorithms inherent to nearly all variable selection strategy
necessarily incorporate a method of sampling the variable space (or
sample space), generating a subset of models, assessing the fitness of the

candidate models and implementing a criteria for selection or conver-
gence to optimal solution [21]. The statistical assessment of output dis-
tribution from a large population of sub-models would have
comprehensive information content on the underlying data and is central
idea of model population analysis (MPA) [20]. The different variable
selection algorithms based on MPA framework diverges based on choice
of random sampling techniques (e.g. MC sampling, bootstrapping or
BMS), the space being sampled (sample or variable space) or the output
being considered.

2.1.1. Monte Carlo uninformative variable elimination (MC-UVE)
Absolute regression coefficient reflects relative importance of vari-

ables, is the fundamental framework of MC-UVE [22]. A fraction of
samples (e.g., 80%) is randomly selected from calibration dataset as a
training subset on which a PLS model is developed [13]. This procedure
is repeated N (e.g., 500) times resulting in a matrix (N� p) of calculated
regression coefficients (β). From distribution of β, a reliability index (RI),
defined as the ratio of the mean to the standard deviation of this distri-
bution, is generated that is used to rank the variables in order of
importance. These sorted variables are sequentially added to establish
PLS models until RMSECV gets minimum in cross-validation. The RI
corresponding to the final variable selected is set as the threshold. All
variables that are related with a RI lower than this threshold value can be
removed.

2.1.2. CARS
Like UVE, CARS also adopts absolute regression coefficients to scale

importance of the variables. For each sampling run, a constant ratio (e.g.,
80%) of samples is first randomly selected to build a calibration model
[15]. Variables are sorted on absolute regression coefficients and only the
best set of variables are retained depending on limit imposed by

Fig. 1. The processes of (a) binary matrix sampling (BMS) and (b) weighted binary matrix sampling (WBMS). The number “1” in each row represents the variable
that is selected for that sub-model while the number “0” represents not selected. Frequency of a variable across the population is calculated by multiplying the
population size (number of rows) by corresponding variable weight (fraction). Each column of the binary matrix is then allotted “ones” in a number equals to its
frequency and column elements are permuted. The variable combination with lowest RMSECV from a round BMS or WBMS is referred as “candidate model”. For
subsequent run a regular WBMS is (c) inflated to retain all variables of the “candidate model” or (d) deflated to exclude all variables not in “candidate model”.
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