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A B S T R A C T

This paper proposes a method to estimate leaf water content from reflectance in four commercial vineyard va-
rieties by estimating the local maxima of a distance correlation function. First, it applies four different functional
regression models to the data and compares the models to test the viability of estimating water content from
reflectance. It then applies our methodology to select a small number of wavelengths (optimum wavelengths)
from the continuous spectrum, which simplifies the regression problem. Finally, it compares the results to those
obtained by means of two different methods: a nonparametric kernel smoothing for variable selection in func-
tional data and a wavelet-based weighted LASSO functional linear regression. Our approach proved to have some
advantages over these two testing approaches, mainly in terms of the computing time and the lack of assumption
of an underlying model. Finally, the paper concludes that estimating water content from a few wavelengths is
almost equivalent to doing so using larger wavelength intervals.

1. Introduction

Water availability plays an important role in the production and
quality of agricultural plants, especially in multi-annual crops such as
vines (Vitis vinifera L.) [1]. One way to estimate vine water content is to
measure leaf water content [2]. Another is to use a pressure chamber to
measure leaf water potential [3], but this method is tedious, time
consuming and even destructive [4,5]. Plant water content can alterna-
tively be assessed by remote sensing technologies [6,7]. Leaf reflectance,
i.e., the ratio of incoming radiance reflected from the leaves, may be used
to estimate water content in addition to other chemical properties such as
chlorophyll, carbon or nitrogen content. Absorption of radiation by water
in the leaf tends to decrease reflectance. The NIR region of the electro-
magnetic spectrum [730–2300] nm contains several wavelengths
strongly influenced by the presence of water, and the state of water in the
measured sample [8]. Several methods have been proposed to estimate
water content from leaf reflectance: vegetation indices [9–11], multiple

regression models [12–14] or inversion models [15,16].
When the reflectance is measured with devices of high radiometric

resolution, the data can be considered as curves. This leads some authors
to propose the use of functional data regression techniques [17,18].
However, some people still find functional data analysis too complex and
difficult to interpret. They prefer methods that are less mathematically
complex and easier to interpret, such as vegetation indices or linear
regression models with a small number of covariates, even though the
predictive results they provide are worse than those provided by more
complex regression models. It is therefore important to develop new
methods to drastically reduce the dimension of the problem and thereby
facilitate the application of simple and readily interpretable models,
which relate response and predictor variables when only a few optimum
wavelengths must be considered.

Methods based on linear finite dimensional projections such as
Functional Principal Component Regression (FPCR) or Functional Partial
Least Squares (FPLS) [19] have been proposed to reduce dimensionality.
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However, one drawback of these kind of methods is that the output is not
directly interpretable in terms of the original variables. Hence the great
interest in variable selection methods, especially in those where the
output only depends on the data, not on any underlying modeling [20]. A
number of variable selection methods have been proposed, among them
the Elastic Net [21] or Boosting approaches [22]. The problem of variable
selection when the predictor variables are categorical has been addressed
in Ref. [23]. In this particular case, the effect of one variable can be
determined not by one, but by several coefficients. Authors in Ref. [24]
tackled the problem of consistency in regression models with high
dimensionality and proposed a limit in the dimension of the problem
compared to the sample size for consistent variable selection. A different
solution was proposed in Ref. [25], using a wavelet-based LASSO pro-
cedure [26]. The regression is performed in the wavelet domain and
then, after discarding small coefficients, the inverse wavelet trans-
formation is applied to return to the original domain. More recently, this
approach was improved by means of screening and penalty factor
weighting schemes [27].

In this work we study the utility of distance correlation [28] as an
intrinsic method for variable selection. Neither projection nor trans-
formation of the variables is needed. Moreover, it is unnecessary to as-
sume an a priori regression model; we just look for local maxima of the
distance correlation function. The rest of the article is structured as fol-
lows: First, we provide a brief summary of the functional parametric [25,
29] and nonparametric regression models [30] used to estimate leaf
water content from reflectance. Second, we provide a brief explanation of
the three methods used to determine optimum wavelengths: one is based
on a nonparametric kernel smoothing [31], another is a wavelet-based
weighted LASSO regression [27], and our proposal, which is based on
calculating local maxima on a distance correlation function. Third, we
apply all the methods explained in the previous section to simulated and
real data. Then, we analyze the results obtained and extract a set of
conclusions that summarize the whole work extracted.

2. Methodology

The following lines summarize the four different functional ap-
proaches employed in this work to estimate leaf water content from
reflectance. A brief explanation of each model is given below, so we
recommend consulting the cited literature for each of the methods. Then,
we explain the method proposed to simplify the problem, reducing its
dimension to a few dimensions corresponding to a small number of op-
timum wavelengths. This method is compared with another two ap-
proaches for variable selection in functional data regression.

2.1. Functional regression models

Consider a sample data fXi;Yigni¼1 where Xi ¼
ðXiðt1Þ;Xiðt2Þ;…;XiðtNÞÞ and Yi 2 ℝ, n being the sample size and N the
number of discrete observation points where the independent variable Xi

is observed. In our study, Xi represents the reflectance at wavelengths
ðt1; t2;…; tNÞ and Yi the water content of each vine leaf. We can assume
that both variables are related by the model

Yi ¼ rðXiÞ þ εi; (1)

where rð⋅Þ is the regression function and εi is an error term with zero
mean that represents other sources of variability not accounted for in Xi.

When we have a fine grid of data XiðtÞ, such when a spectrometer is
used to register leaf reflectance, we may formulate the regression prob-
lem within the context of functional data analysis [18]. In this case Xi ¼
XiðtÞ can be considered a function of t 2 ½a; b�. In functional data analysis
we assume the underlying processes generating the data smooth and may
therefore be approximated by functions. Techniques commonly used in
multivariate statistics, such as principal component analysis, regression,

clustering, classification or ANOVA, are also adapted to work with
functions instead of vectors. One of the advantages of FDA over classical
multivariate statistics is that it allows us to extract additional information
contained in the functions and their derivatives [32].

We applied the four functional regression models described in the
next section to estimate water content from reflectance.

2.1.1. Functional linear regression (FLR)
Let be Xi 2 L 2ðTÞ 8t 2 ½a; b�, and Yi 2 ℝ, a parametric functional

linear model, as formulated in Ref. [29], can be written following the
model in (1) as follows:

Yi ¼ αþ ∫
T
XiðtÞβðtÞdt þ εi; (2)

where α 2 ℝ and βðtÞ 2 L 2ðTÞ are the regression coefficients. In this
model XiðtÞ and βðtÞ are approximated by means of decomposition in K
basis functions

XiðtÞ �
XK
k¼1

aikϕk ¼ a>
i Φ and βðtÞ �

XK
k¼1

bkθkðtÞ ¼ b>Θ;

so,

∫
T
XiðtÞβðtÞdt � a>

i ΦΘ>b;

where ai and b are Kx1 vector of coefficients, and Φ and Θ are the basis
functions. The choice of the appropriate basis functions (and the number
of basis elements) becomes a crucial step [33]. They are usually poly-
nomial, exponential, B-splines, Fourier functions or wavelets.

The unknowns α and b are obtained by minimizing the penalized
residual sum of squares

n�1
Xn
i¼1

�
Yi � α� ∫

T
XiðtÞβðtÞdt

�2
þ λ∫

T
½DpβðtÞ�2dt: (3)

The second term is a regularization term that penalizes high local
variations of the regression coefficients. λ is a positive constant that
controls the trade-off between roughness and fidelity to the data, and
DpðβÞ is the derivative of order p. The second derivative is normally used,
given that it measures the size of the curvature.

2.1.2. Functional wavelet-based LASSO regression (FWLASSO)
LASSO (Least Absolute Shrinkage and Selection Operator) is a well

known technique for shrinkage and variable selection in multiple
regression. It basically consists in penalizing the magnitude of the
regression coefficients in order to reduce the influence of the small ones
as compared with the large ones. Its extension to functional regression
leads to an expression similar to Eq. (3), changing the regularization term
as follows:

bβðtÞ ¼ arg min
βðtÞ2L 2ðTÞ

 Xn
i¼1

�
Yi � ∫

T
XiðtÞβðtÞdt

�2
þ λ∫

T

��βðtÞ��dt!: (4)

When the penalty parameter λ increases, the range of t values with
βðtÞ ¼ 0 also increases.

As with FLR, the predictors XiðtÞ and regression coefficients βðtÞ are
approximated using basis functions, such as B-splines [34] or wavelets. In
this work, we used wavelet-based LASSO in functional regression
following [25] and [27]. The problem is solved in the wavelet domain
and then, after selecting the non-null coefficients, these coefficients are
mapped back to the original domain. Among other advantages, a
wavelet-based LASSO regression performs well when the coefficient
function is spiky. For a primary decomposition level j0, the wavelet
decomposition of the predictors can be represented as

C. Ord�o~nez et al. Chemometrics and Intelligent Laboratory Systems 173 (2018) 41–50

42



Download English Version:

https://daneshyari.com/en/article/7562205

Download Persian Version:

https://daneshyari.com/article/7562205

Daneshyari.com

https://daneshyari.com/en/article/7562205
https://daneshyari.com/article/7562205
https://daneshyari.com

