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A B S T R A C T

The interpretation of estimates of model parameters in terms of biological information is often just as important as
the predictions of the model itself. In this study we consider the identification of metabolites in a possibly bio-
logically heterogeneous case group that show abnormal patterns with respect to a set of (healthy) control ob-
servations. For this purpose, we filter normal (baseline) natural variation from the data by projection of the data
on a control sample model: the residual approach. This step should more easily highlight the abnormal metab-
olites. Interpretation is, however, hindered by a problem we named the ‘residual bias’ effect, which may lead to
the identification of the wrong metabolites as ‘abnormal’. This effect is related to the smearing effect.

We propose to alleviate residual bias by considering a weighted average of the filtered and raw data. This way,
a compromise is found between excluding irrelevant natural variation from the data and the amount of residual
bias that occurs. We show for simulated and real-world examples that this compromise may outperform inspection
of the raw or filtered data. The method holds promise in numerous applications such as disease diagnoses,
personalized healthcare, and industrial process control.

1. Introduction

Untargeted metabolomics is becoming increasingly important in an
extensive range of applications such as food science [1,2], environmental
science [3], forensics [4], and healthcare [5,6]. Comprehensive profiling
with metabolomics therefore has become a household approach in many
branches of quantitative research and many societally relevant topics.
Oftentimes, a set of control observations and a set of cases are measured
by high-throughput techniques (e.g. 1H NMR or LC-MS) in such studies.
This leads to the case-control studies that we focus on in this work. Next,
based on (multivariate) statistical analysis of the acquired data, hy-
potheses on the mechanism that may be responsible for biological phe-
nomena are generated. Such a mechanism generally influences multiple
metabolites at the same time, with the desired result being a series of
biomarker metabolites that together may be specific for that process and
may possibly be used for prediction. Multivariate chemometric ap-
proaches are widely used for this, as these may extract relevant infor-
mation using all variables at once, as opposed to one feature at a time.
One challenge in analysing experiments like these is the large amount of
(possibly confounding) natural variation such as a subjects diet, genotype
or gut microbiome. These variations cannot be completely known and are

beyond control of the experimental researcher. It hinders the analysis as
this variation is inherently non-informative.

Our goal is to separate this irrelevant natural variation from the
biologically interesting information (related to the phenomenon of in-
terest) in a case-control experiment. Our focus here is on interpretation
rather than prediction: we want to find the systematic metabolic differ-
ences between the two groups so that we can interpret them to learn
more about the biological phenomenon investigated in the experiment.
The most common way to tackle this in case-control studies, is to pose it
as a two-class classification problem and analyse it with a method such as
PLS-DA [7,8]. A shortcoming of this approach, is that this assumes a
homogenous response to a disease. This assumption is often not met in
practice. Using multiple classes to model the heterogeneity of the disease
would be possible, but requires both sufficient data and the class labels.

A method without this shortcoming is Statistical Health Monitoring
(SHM) [9] that builds on principles from analysis of industrial process
monitoring. SHM is based on describing, using principal component
analysis (PCA), the variation common to most of the samples in the
control group, the natural variation. This is referred to as modelling the
Normal Operating Conditions (NOC) of metabolic variability. Subse-
quently, patient data can be matched to the NOC. Individuals that do not
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match this NOC are abnormal and should be further inspected with the
use of ‘contribution plots’ that provide the measured metabolites that are
most ‘abnormal’ and can be used for root cause analysis. A notable
characteristic is that SHM regards each sample separately, as opposed to
the classification approach. Recently, SHM been successfully applied in a
liver study in Ref. [10], where it is shown that SHM found metabolites
that have been confirmed to play a role in relevant pathways, as opposed
to the classification approach which found other metabolites.

SHM suffers from two limitations however. One is that is only able to
process individual samples, each sample is analysed individually to see if
and where it deviates from the NOC. This is of course not a concern if
there is only one sample available, but when multiple samples are
available, methods that use these at the same time could be inherently
more powerful than the methods that do not. The second limitation is the
smearing effect [11,12] that contribution plots are known to suffer from.
This can cause the identification of the wrong metabolites.

The ‘Residual Approach’ we investigate here takes the ideas of Sta-
tistical Health Monitoring further, and extends them to a multi-sample
situation. This makes the Residual Approach applicable for both single
sample and multi sample situations. It calculates residuals by removing
the natural variation from the data. These information-rich residuals can
then be further investigated to identify the metabolites (variables)
affected by the experiment. Analysis of these residuals, by for example
PCA, makes it possible to reveal those variables. Calculating these re-
siduals can thus be seen as a form of pre-processing to rid the data of
natural variability unrelated to the case-related metabolism. Other
residual-based approaches with different goals can be found in Refs.
[13–15]. The approach we present here can also be used for these goals.

The square of these residuals are equivalent to a specific type of
contribution plot: the complete decomposition of the Q-statistic [12]. As
contribution plots are known to suffer from the ‘smearing effect’, it can
be expected that this affects the residuals in much the same way. A model
trained on these residuals cannot be completely trusted as a result, as the
deviations compared to the NOC model may express themselves on fea-
tures unrelated to the response. Furthermore, this residual approach
limits itself to the residual space and disregards the NOC space as we
explicitly remove the entire NOC space from the data. This again limits its
interpretability. We name these effects together the ‘residual bias effect’.
Other methods, such as ICA [16] or MCR-ALS [17], could in theory also
be used to analyse this type of data but have their own associated chal-
lenges. ICA, for example, assumes that components are statistically in-
dependent. This assumption may not be valid, as disease may not
necessarily manifest themselves as statistically independent components.
MCR-ALS requires sufficient constraints on the determined components
to come to a meaningful solution, these constraints follow from prior
information that may not necessarily be available for many diseases.

In this work we investigate the Residual Approach and the associated
‘residual bias effect’ and propose a new method to alleviate this effect.
We show that this new method combined with PCA analysis can be more
reliable in terms of interpretability than PLS-DA.

2. Theory

2.1. Normal Operating Conditions

The Normal Operating Conditions (NOC) describes a group of healthy
individuals, for example 1H NMR spectra of their urine. Typically, this
NOC is represented by a dataset where each of the samples is a mea-
surement from the situation that is ‘under control’, i.e. healthy or at least
non-diseased. This is analogous to process control, where the NOC is a
situation where the industrial plant is under control and generates
products within specifications. We denote this dataset with XNOC. This
XNOC is often modeled by latent variable models like PCA or ICA [16].
Such component-based models may be generically represented by eq. (1)

XNOC ¼ TNOCPT
NOC þ E; (1)

where PNOC are the NOC loadings, TNOC the scores and E the residuals,
note that TNOCPT

NOC is the reconstruction of our data matrix XNOC. While
models like these typically describe the data well, the number of com-
ponents needs to be estimated. Choosing the appropriate number of
components is critical to the model as the incorrect number may cause
the model to over- or underfit. Selecting an appropriate number of
components is as challenging as in most chemometric methods based on
dimensionality reduction, especially without a good objective criterion to
optimize. Here we have opted to use the NUMFACT approach [18]. In the
case where the NOC is a group of healthy individuals, subgroups can be
present, for example males and females. If the data within these sub-
groups is very distinct, multiple NOCs could be used, leading to a SIMCA
[19]-like approach. Here we only consider the situation where no distinct
subgroups are present.

There is of course also the group under investigation: the case group.
This group may be no longer in control and is in a state that may not be
completely described by the model created on the NOC, due to an effect of
a disease or experiment has on their metabolic profile, analogous to
products from an industrial plant that has a fault of some sort. One key
difference between industrial process control and the Residual Approach
we discuss here, is that we regard these samples as a group as we expect
there to be similarities between them which we would like to exploit.

The case group we will be using here is a patient group with a specific
disease. This group is described by a series of measurements which we
shall denote by Xcase. The group can still be described partially by the
NOC model, since a disease might manifest itself in the urine as an
additional contribution to the ‘healthy’ metabolism they share with the
control group. Another part of the urine composition (either over- or
underrepresented metabolites) can however not be described by the
NOC: this is the contribution to the urine composition of most interest, as
this contains the biomarkers of disease. This contribution might be
similar for each individual, leading to a two-class problem. In practice
however, some people react more strongly than others to an experiment;
people might even react by changes in different combinations between
metabolites. If we describe this group with a latent variable model the
combined model would look like

Xcase ¼ T*
NOCP

T
NOC þ TcasePT

case þ E; (2)

where T*
NOC is the score of the NOC component, Tcase the score of the case

component, Pcase is the loading of the case component(s) we are looking
for and E are residuals. Eq. (2) can describe both a homogeneous or
heterogeneous group. PNOC and Pcase are often orthogonal matrices,
PTP ¼ I. The spaces spanned by PNOC and Pcase are however typically
mutually non-orthogonal PT

NOCPcase 6¼ I , as disease or experimental ma-
nipulations may affect several endogenous metabolites that are already
present in PNOC—hence there is no biological foundation for both spaces
to be orthogonal.

Our goal is to find Pcase as accurately as possible, to find the most
information-rich metabolites as clues for the mechanism responsible for
the disease under investigation.

It should be noted that not all deviations from the NOC will neces-
sarily manifest as an additional effect as in eq. (2). It could also be
possible that Xcase will have higher values for T*

^NOC compared with the
NOC. This should be evident from these values.

2.2. Residual-based approach

If the data indeed follows the model in eq. (1) and Xcase can be
described partly by the NOC and partly by a latent variable corre-
sponding to the disease, we should be able to remove the variation that
can be explained by the NOC. After the NOC variation has been removed,
the residuals should contain only information relevant to the disease.
Mathematically this corresponds to:
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