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a b s t r a c t

In the literature, there exist strong results on the qualitative dynamical properties of chemical reaction
networks (also called kinetic systems) governed by the mass action law and having zero deficiency.
However, it is known that different network structures with different deficiencies may correspond to the
same kinetic differential equations. In this paper, an optimization-based approach is presented for the
computation of deficiency zero reaction network structures that are linearly conjugate to a given kinetic
dynamics. Through establishing an equivalent condition for zero deficiency, the problem is traced back to
the solution of an appropriately constructed mixed integer linear programming problem. Furthermore, it
is shown that weakly reversible deficiency zero realizations can be determined in polynomial time using
standard linear programming. Two examples are given for the illustration of the proposed methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonnegative (or positive) dynamical systems, the state vari-
ables of which remain nonnegative for nonnegative initial con-
ditions, have important significance in areas such as chemistry,
biology, economics, and transportation where the described phys-
ical quantities changing in time and/or in space are naturally non-
negative [1,2]. An important subclass of nonnegative systems is
the family of chemical reaction networks (CRNs, also called kinetic
models) rooted in the dynamical description of the concentrations
of interacting molecules. Actually, the application potential of ki-
netic models is much wider than pure chemistry, since nonnega-
tive models from other fields such as disease dynamics, ecology,
and transportation are often readily in (or can easily be trans-
formed to) kinetic form [3,4]. Notable special cases of kinetic mod-
els are compartmental systems [2] and Lotka–Volterra systems [5].
Additionally, kinetic systems are the fundamental dynamic model
building blocks in systems biology [6].

In (bio)chemical applications, the system parameters (typically
the reaction rate coefficients) are uncertain, and often only their
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order of magnitude is known. Therefore, one of the main sub-
jects of chemical reaction network theory (CRNT) is to give con-
ditions on the qualitative behavior of kinetic models using mainly
the stoichiometry and graph structure of reaction networks [7,8].
In [8,9], the authors introduce to the study of chemical reaction
networks a parameter known as the deficiency, which is a non-
negative integer not depending on the rate coefficients. A clas-
sical result of CRNT with clear significance in nonlinear systems
theory is the Deficiency Zero Theorem that establishes a robust
stability property for deficiency zero reaction networks consist-
ing of strongly connected reaction graph components with a
known, parameter-independent logarithmic Lyapunov-function. A
promising but technically challenging conjecture not requiring the
zero deficiency but only the so-called complex-balanced property
for the global stability of a kinetic system is the Global Attractor
Conjecture that was proved in [10] for reaction networks having
only one graph-component. Furthermore, the Boundedness Con-
jecture says that anyweakly reversible reaction networkwithmass
action kinetics has bounded trajectories (see, e.g. [11]). It is not sur-
prising therefore that the useful properties of kinetic models have
raised the interest of control scientists [12,13]. In [14], the defi-
ciency zero theorem is revisited and generalized from a control-
theoretical point of view by showing that awide class of CRNswith
a linear input structure can be easily stabilized asymptotically. It
is shown in [15] that weakly reversible deficiency zero networks
are input-to-state stable with respect to the time varying reaction
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rates as inputs. Moreover, it is possible to construct globally con-
vergent observers for detectable deficiency zero models [16].

It has been known for a long time, however, that the re-
action network representation of a kinetic dynamics is gener-
ally not unique, i.e. reaction networks with different structures
and/or different set of chemical complexes may represent the
same dynamics. This phenomenon is calledmacro-equivalence [7],
confoundability [17] or dynamical equivalence [18], where the
possible CRNs corresponding to the same dynamics are called real-
izations of a kinetic ODE model. The notion of linear conjugacy ex-
tends dynamical equivalence by allowing a positive diagonal linear
transformation between the states of linearly conjugate realiza-
tions [19]. It is known, too, that important model properties such
as deficiency, strong connectivity (also called weak reversibility),
complex or detailed balance are realization dependent. Therefore,
finding dynamically equivalent or linearly conjugate CRN struc-
tureswith certain requiredproperties canbe an interesting and im-
portant problem for proving qualitative properties of the model. It
was shown that several sub-problems of this class can be success-
fully solved in the framework of linear and mixed integer linear
programming (see, e.g. [18,20]). In [21] an MILP-based procedure
was proposed for findingweakly reversible linearly conjugate real-
izations of kinetic systems with minimal deficiency. The algorithm
was based on the result that for weakly reversible realizations,
maximizing the number of reaction graph components minimizes
the deficiency. Thismethod uses integer variables for the partition-
ing of complexes between linkage classes. However, it is known
that MILP problems are generally NP-hard and therefore it is of-
ten computationally problematic to solve large problems contain-
ing integer variables. Moreover, for general non-weakly reversible
CRN structures, the basic principle of [21] cannot be applied. There-
fore, the approach of this paper is different, and our aim is to exam-
ine and use the special algebraic consequences of zero deficiency to
give a general algorithm for computing such realizations of kinetic
systems.

The structure of the paper is the following. In Section 2, the
notations used for the representation of kinetic dynamics and
linear conjugacy are introduced. Section 3 contains themain result
that is an optimization based method for the computation of
deficiency zero linearly conjugate kinetic realizations. In Section 4
two illustrative examples are shown, while Section 5 summarizes
the contribution of the paper.

2. Kinetic systems and their realizations

The basic notions and tools related to reaction kinetic systems
and their realizations are briefly summarized in this section with
an emphasis on their effect on the structural stability. The follow-
ing mathematical notations will be used in the paper. Rn

+
and R̄n

+

denote the positive and nonnegative orthant of the n-dimensional
Euclidean space Rn, respectively, and 0 denotes the zero vector.
Similarly, 1 denotes a column vector, all entries of which are 1.
For an n-dimensional column vector v, diag(v) is the n × n diag-
onal matrix with v1, . . . , vn in its diagonal. For an arbitrary ma-
trix M , im(M), ker(M) and col(M) denote the image, kernel and
the set of columns of M , respectively. The element in the ith row
and jth column of a matrixM is denoted byMi,j or [M]i,j whenever
the latter is more convenient. V⊥ and dim(V ) denote the orthogo-
nal complement and dimension of the vector space V , respectively,
while the sum of vector spaces V1 and V2 is defined as V1 + V2 =

{v1 + v2 | v1 ∈ V1, v2 ∈ V2}. The set of natural numbers (in-
cluding zero) is denoted by N0. Two matrices M1,M2 ∈ Rn×m are
called structurally equal if the positions of the zero and non-zero
elements are the same in M1 and M2, i.e. [M1]i,j ≠ 0 if and only
if [M2]i,j ≠ 0. Additionally, we will use the following notations
known from propositional calculus: ‘H⇒’ and ‘⇐⇒’ denote the
‘implies’ and ‘if and only if’ relations between logical expressions
having the ‘true’ or ‘false’ value.

2.1. The algebraic structure of kinetic systems

The general form of dynamicmodels studied in this paper is the
following
ẋ = Y · Ak · ψ(x), (1)
where x ∈ Rn is the state vector, Y ∈ Nn×m

0 , Ak ∈ Rm×m is a special
Metzler-matrix defined as:

[Ak]i,j =

−

m
h=1,h≠i

khi if i = j

kji ≥ 0 if i ≠ j.

(2)

It is clear from (2) that Ak is a matrix with non-positive diagonal
and non-negative off-diagonal elements and zero column sums.
Therefore, Ak is often called the Kirchhoff-matrix of the system in
the theory of kinetic systems. The monomial vector function ψ :

Rn
→ Rm is defined as

ψj(x) =

n
i=1

x
Yi,j
i , j = 1, . . . ,m. (3)

It is easy to show that (1) defines a nonnegative system, i.e. the
nonnegative orthant is invariant for its dynamics (see, e.g. [13]).
With the notationM = Y · Ak, the model (1) can be written as
ẋ = M · ψ(x). (4)
A polynomial dynamical system with state vector x ∈ Rn is called
to have the kinetic property (or simply kinetic) if there exist Y ∈

Nn×m
0 and an m × m Kirchhoff matrix Ak such that the ODEs of the

system can be written in the form of Eq. (1), where ψ is given by
(3). The following necessary and sufficient condition for a general
polynomial system to be kinetic was given in [22]. Consider a poly-
nomial system written as

ẋ = M̃ · ψ̃(x) (5)

where M̃ ∈ Rn×m̃ and ψ̃j(x) =
n

i=1 x
Bi,j
i , i = 1, . . . , m̃ with B ∈

Nn×m̃
0 . Then, (5) can be written into the form (1), i.e. there exist ap-

propriate matrices Y and Ak such that

M̃ · ψ̃(x) = Y · Ak · ψ(x), ∀x ∈ R̄n
+

(6)

if and only if the following condition is fulfilled for M̃ and B:

if M̃i,j < 0, then Bi,j > 0, for i = 1, . . . , n, j = 1, . . . , m̃. (7)
Condition (7) expresses the fact that kinetic systems cannot con-
tain negative cross-effects [3]. In [22], in the framework of a con-
structive proof, a simple procedure was described to generate a
possible Y , Ak pair (called the canonical mechanism) such that (6)
holds. It has to be noted however, that Y and Ak fulfilling (6) for
given M̃ and ψ̃ are generally non-unique.

The chemically originated notions of kinetic systems are the
following. The species of the system are denoted by X1, . . . , Xn,
and the concentrations of the species are the state variables of (1),
i.e. xi ≥ 0 for i = 1, . . . , n. The structure of kinetic systems is
given in terms of its complexes Cj, j = 1, . . . ,m that are formally
the nonnegative integer linear combinations of the species, i.e.
Cj =

n
i=1[Y ]i,jXi for j = 1, . . . ,m, and therefore Y is also called

the complex composition matrix.
The chemical reactions Ci → Cj where i ≠ j, with the reac-

tion rate coefficient kij > 0, represent the transformation of the
complexes into each other with the so-called mass action law type
reaction rate rij given by

rij(x) = kijψi(x) = kij
n
ℓ=1

x
Yℓ,i
ℓ , (8)

where kij = [Ak]j,i as it is written in (2). If [Ak]j,i = 0 for any i ≠ j,
it means that the reaction Ci → Cj is not present in the system.
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