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a b s t r a c t

In this paperwe show that a variety of stability conditions, both existing and new, can be derived for linear
systems subject to time-varying delays in a unified manner in the form of scaled small-gain conditions.
From a robust control perspective, our development seeks to cast the stability problem as one of robust
stability analysis, and the resulting stability conditions are also reminiscent of robust stability bounds
typically found in robust control theory. The development is built on thewell-known conventional robust
stability analysis, requiring essentially no more than a straightforward application of the small gain
theorem. The derived conditions have conceptual appeal, and they can be checked using standard robust
control toolboxes.
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1. Introduction

In this paper we are concerned with linear time-delay systems
described by the state-space equation
ẋ (t) = A0x (t) + A1x (t − τ (t)) , (1)
where A0, A1 ∈ Rn×n are given constant state matrices, while
τ (t) is the delay parameter varying with time, which satisfies the
bounds:
0 ≤ τ (t) ≤ τM , (2)
|τ̇ (t)| ≤ δ < 1, ∀t ≥ 0. (3)
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In otherwords, the time-varying delay is only known to bewithin a
given interval, and how fast it may vary is bounded by a given rate.
We study the stability properties of delay systems in this category.

Stability of time-delay systems in the aforementioned descrip-
tion has been long and well studied (see [1–3] and the references
therein), and both time- and frequency-domain analysis ap-
proaches have been developed. For systems with an unknown
constant delay, i.e., when τ(t) is a constant, the stability prob-
lem is largely resolved and various stability conditions are readily
available. In particular, necessary and sufficient frequency-domain
conditions in the spirit of small-gain theorem can be efficiently
computed to determine the stability and characterize other rele-
vant properties for such systems, and more generally for systems
with multiple commensurate delays [2,4,5]. On the other hand,
the stability problem in the case of time-varying delays proves
far more intricate. The existing results are predominantly time-
domain conditions, which in their essential flavor are obtained
based on the construction of Lyapunov functionals and as the
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solutions to linear matrix inequality (LMI) problems (see [1,2,6] and
the references therein).

In this paper we present small-gain type stability criteria for
systems subject to time-varying delays. The essential catalyst mo-
tivating this development is the classical small-gain theorem gov-
erning the stability of interconnected feedback systems. To this
effect, a key step is to reformulate delays by fictitious modeling
uncertainties in a non-conservative way, which consequently will
allow us to draw upon rich tools and techniques in robust control
theory. This idea, built upon [7], was first advocated in [2]. Similar
results were developed subsequently in, e.g., [8–10], which, albeit
not directly in terms of system gains and a small-gain argument,
are characterized by quadratic integral inequalities known as inte-
gral quadratic constraints (IQC) and solvable as LMI problems. This
work supplements the existing results by collecting and develop-
ing in a unified manner a systematic set of small gain conditions. It
is worth pointing out that by their nature some of these conditions
are particularly pertinent and indeed comparable to the IQC results
alluded to above; in fact, some of them are equivalent and can be
derived from one to another. Nevertheless, we hold the perspec-
tive that a variety of existing as well as new stability conditions
can be derived directly and systematically based on the conven-
tional, more familiar robust stability analysis, in the form of scaled
small-gain conditions typically found in, e.g., structured singular
value analysis [11]. This approach appears both natural and more
straightforward, and arguably, renders our results to be of more
conceptual transparency and technical simplicity, requiring essen-
tially only the well-known small gain theorem, instead of more
sophisticated machineries. Well-established robust control tool-
boxes can be used directly as well, in a straightforward manner.
Additionally, our approach also recovers in the limit the stronger
conditions only applicable to constant delays, when the delay vari-
ation rate tends to zero, that is, when the delay is very slowly vary-
ing. The results in this latter case share the spirit of [12] and do not
seem to be available elsewhere.

2. Preliminaries

We denote by σ̄ (·) the largest singular value of a matrix, and
ρ(·) the spectral radius. Let ∥ · ∥ be the Hölder ℓ2 norm of a vector,
and L2 the space of energy-bounded signals defined by

L2 := {f : R → R
n
| ∥f ∥2 < ∞},

where the L2 norm ∥ · ∥2 is defined as

∥f ∥2 :=


∞

0
∥f (t)∥2 dt

1/2

.

Furthermore, letRH∞ be the set of stable rational transfer function
matrices. Consider a linear system H : L2 → L2, so that y = Hx.
The L2 induced system norm of H is defined as

∥H∥2,2 := sup
x≠0

∥y∥2

∥x∥2
.

The system is said to be L2-stable if ∥H∥2,2 is finite. For a linear
time-invariant (LTI) system, the L2 induced system norm coincides
with the H∞ norm of the system’s transfer function matrix Ĥ(s),
i.e.,

∥Ĥ∥∞ = sup
ω

σ̄ (Ĥ(jω)).

Under the L2-stability notion, the small-gain theorem can be stated
as follows [2, pp. 72], [11, pp. 211]:

Lemma 1 (Small-Gain Theorem). Suppose that M and∆ are both L2-
stable. Then the feedback system in Fig. 1 is L2-stable if

∥M∆∥2,2 < 1. (4)

Fig. 1. M–∆ loop: Small-gain theorem.

Fig. 2. M–∆ loop: Scaled small-gain theorem.

Furthermore, since ∥M∆∥2,2 ≤ ∥M∥2,2∥∆∥2,2, a weaker condition
for the system’s L2-stability is

∥M∥2,2∥∆∥2,2 < 1. (5)

For convenience, we shall refer to M as the nominal system, ∆ as
the uncertainty, and the feedback system as the M–∆ loop. It is
clear that in general, the small-gain conditions (4) and (5) provide
only sufficient stability conditions,which at times can be conserva-
tive. The conservatism in the small-gain conditions, nevertheless,
can be reduced by introducing matrix multipliers in the feedback
loop. Toward this end, we introduce the sets of matrices and trans-
fer function matrices

D(n)
S = {diag{d1, . . . , dn} : di ∈ R, di > 0},

D(N)
F = {diag{D1, . . . ,DN} : Di ∈ C

n×n,Di = D∗

i > 0},

D(N)
d = {diag{D1(s), . . . ,DN(s)} : Di(s), D−1

i (s) ∈ RH∞},

with dimensions compatible to that of ∆. These sets are com-
monly referred to as constant diagonal, constant block diagonal,
and frequency-dependent block diagonal scalings, corresponding
to full-block and repeated scalar uncertainties, respectively, in the
structured singular value analysis [11]. Noting the equivalence of
Fig. 2 to Fig. 1, we conclude that another sufficient condition for the
L2-stability of theM–∆ loop is that

∥D−1MD∥2,2∥D−1∆D∥2,2 < 1, (6)

for any D in the aforementioned sets.
As pointed out in [2, pp. 74], the time delay can be considered a

linear operator ∆1 such that

∆1x (t) = x (t − τ (t)) . (7)

As such, onemay reformulate the system (1) as one of feedback in-
terconnection in Fig. 1; the corresponding M will be given in the
next section. This recognition led to a sufficient stability condi-
tion in [2], based on the small-gain theorem given in Lemma 1.
It is worth noting that for any D ∈ D(n)

S and D ∈ D(1)
F , we have

D∆1x(t) = ∆1Dx(t); in other words, the constant scaling matrix
D and the uncertainty ∆1 commute. The implication then is that
D−1∆1D = ∆1. According to (5) the M–∆ loop is L2-stable if the
scaled small-gain condition

∥D−1MD∥2,2∥∆1∥2,2 < 1

holds. It is important to emphasize, nonetheless, that for frequency-
dependent scaling D(s) ∈ D(1)

d , this commutability ceases to be
true [8], a fact whose importance will be seen shortly.

More refined uncertainty reformulations of the delay can be
sought after by employing the so-called model transformation
[2, pp. 211]

x(t − τ(t)) = x(t) −

 t

t−τ(t)
ẋ(u) du. (8)
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