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a b s t r a c t

The stability and L2 performance analysis of systems consisting of an interconnection of a linear-time-
invariant (LTI) system and a static nonlinear element which is Lipschitz, slope restricted and sector
bounded is revisited. The main thrust of the paper is to improve and extend an existing result in the
literature to enable (i) concise and correct conditions for asymptotic stability of the interconnection and
(ii) reasonably tight bounds on theL2 gain between an exogenous input and a given output to be obtained.
Numerical examples indicate that the proposed algorithm performs well compared to competing results
in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the system depicted in Fig. 1 (overleaf)
where the nonlinearity is a sector bounded, slope restricted
nonlinearity. The problem addressed is:-

Problem 1.
(1) Whenw(t) ≡ 0, find Lyapunov-based conditionswhich enable

global asymptotic stability of the origin of the interconnection
to be ascertained.

(2) When w(t) ≠ 0, find conditions, based on the same Lya-
punov function used to establish asymptotic stability, which
enable the L2 gain from the input w(t) to the output z(t) to
be bounded as tightly as possible.

Variants of this problem have been studied extensively in the lit-
erature and, in particular, Problem 1(1) is, in essence, the absolute
stability problem which has been treated since at least the 1940s.
Popular solutions to Problem 1(1) are the Circle Criterion and the
Popov Criterion. Good introductions to both criteria can be found
in [1,2], and comprehensive treatments of the Lyapunov approach
found in [3,4]. Further developments of the Popov/Circle Criteria
for multiple equilibria are also given [2], although this is beyond
the scope of this paper.
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Despite the popularity of the Circle and Popov Criteria, it is
well known thatwhenmore information, other than sector bound-
edness, is known about the nonlinearity Φ(.), both criteria can
be conservative. In particular, when the nonlinearity is slope-
restricted various alternative stability criteria can be derived; there
are too many to list here but examples may be found in [5–9]. Of
particular note are the results of Zames and Falb [5] which pro-
vide a very flexible approach to establishing asymptotic stability
for single-input–single-output slope-restricted systems. These re-
sults were later extended to various classes of multivariable sys-
tems by Safonov and colleagues [10–12]. However, for many years
they were not widely used due to the complexity of searching
for the so-called Zames–Falb multiplier. Recently several results
have become availablewhich, to some extent, automate this search
[13–16] and frequently far superior results can be obtained than,
for instance, with the Popov Criterion. Despite these improve-
ments, the computational burden associated with, for instance
[15,16] tends to be quite high [17,18] due to the search for the
multiplier not being ‘‘quite’’ convex (it is an LMI-problem plus a
line search). For high-order complex systems, this burden can be
prohibitive. In addition, the results provided by such IQC-based
methods are not intrinsically associated with the construction of
Lyapunov functions, which is in an interesting subject in its own
right, and also useful if local results are required.

In [19], a novel Lyapunov function was used in order to obtain
less conservative methods for guaranteeing asymptotic stability of
the system shown in Fig. 1. The Lyapunov function was piecewise
quadratic, as in [20–22], but also used several integral terms de-
rived from the properties of the nonlinearity. Twomain LMI-based
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Fig. 1. System under consideration.

results were derived in [19]: Theorem 1 which, although techni-
cally correct, featured redundant terms in the LMI’s, thereby caus-
ing complications and increasing the computational burden; and
Theorem 2, which although simpler, seems to feature a small tech-
nical error (at least an assumption of controllability on the LTI part
appears to be missing) despite ‘‘working’’ in many cases. In addi-
tion the L2 gain problem is not addressed in [19]. However, the
work of [19] is significant because it generalises the Popov Crite-
rion and appears dramatically less conservative inmany numerical
examples, even appearing to out-perform the Zames–Falb multi-
plier in some cases [17,18].1 Our goal in this paper is to present
results which are an improved alternative to Theorem 2 in [19],
that is they are correct, concise and able to provide reasonably non-
conservative L2 gain bounds. The class of system to which the re-
sults apply is also extended. The primary motivation for this work
is the analysis of the stability of complex systems which can be
posed as in Fig. 1, which due to their size/dimension/complexity
can be difficult to analyse, without excessive conservatism, using
standard results.

The paper is structured as follows: in the next section, the
problem is formally introduced. The main results are given in the
following section; numerical examples in the section after that.
Some brief final remarks conclude the paper.

1.1. Notation

Notation is mainly standard. The L2 norm of a vector valued
function x(t) is defined as ∥x∥2 :=


∞

0 ∥x(t)∥2dt
1/2 where ∥(.)∥

denotes the standard Euclidean norm; any signal whose L2 norm
is finite is denoted x(t) ∈ L2. The nonlinear operator, T : w → z
is said to haveL2 gain less than γ if ∥z∥2 < γ ∥w∥2 +β for scalars
γ , β ≥ 0 and ∀w ∈ L2.

2. Problem description

Consider the system depicted in Fig. 1. P(s) denotes a finite-
dimensional linear-time-invariant (LTI) system described by the
following state-space equations.

P(s) ∼

ẋ = Ax + B1w + B2φ
z = C1x + D11w + D12φ
y = C2x + D21w + D22φ

(1)

where x ∈ Rn, w ∈ Rnw , z ∈ Rnz , y ∈ Rm, φ = Φ(y) ∈ Rm and the
state-space matrices are dimensioned accordingly. The nonlinear
operator Φ(.) : Rm

→ Rm is a decentralised globally Lipschitz,
sector bounded, slope restricted nonlinearity which satisfies the
following assumptions:

1 This appears to be more due to the difficulty in the search for Zames–Falb
multipliers than something intrinsic however.

Assumption 2. Φ(.) : Rm
→ Rm is decentralised, that is for

σ ∈ Rm

Φ(σ ) =

Φ1(σ1) Φ2(σ2) · · · Φm(σm)

′

and each element,Φi(.) : R → R is globally Lipschitz, zero at zero,
and satisfies the following conditions.

Φi(σi)

σi
∈ [0, δi] ∀σi (2)

∂Φi(σi) ∈ [0, δ̄i] ∀σi (3)

for all i ∈ {1, . . . ,m}, where ∂Φi represents the sub-differential
of Φi.

Note that Eq. (3) reflects that fact that Φi(.) may not be
differentiable everywhere, but from the Lipschitz assumption,
means that

∂Φi(σi) =
dΦi(σi)

dσi
a.e. (4)

This is a minor technical difference, compared to the original
results of [19], which is easily accommodated in the proofs yet
is necessary to enable one to treat common slope-restricted
nonlinearities such as the saturation and deadzone. In [19] it was
shown how the two inequalities (2) and (3) could then be used to
derive eight sets of integral inequalities to be used as part of the
Lyapunov function. In this work we use only four of those sets of
inequalities, but show how the use of such inequalities is able to
preserve (and in fact improve upon) Theorem 2 of [19], implying
redundancy in those inequalities. For ease of reference we repeat
the inequalities used in this paper below, where the µI,i are any
positive scalars for all I ∈ {1, . . . , 4} , i ∈ {1, . . . ,m}.

g1,i(x) = µ1,i

 yi

0
Φi(σi)dσi ≥ 0 ∀yi ∀i ∈ {1, . . . ,m} (5)

g2,i(x) = µ2,i

 yi

0
[δiσi − Φi(σi)]dσi ≥ 0

∀yi ∀i ∈ {1, . . . ,m} (6)

g3,i(x) = µ3,i

 yi

0
[δ̄i − ∂Φi(σi)]σidσi ≥ 0

∀yi ∀i ∈ {1, . . . ,m} (7)

g4,i(x) = µ4,i

 yi

0
∂Φi(σi)[δiσi − Φi(σi)]dσi ≥ 0

∀yi ∀i ∈ {1, . . . ,m} . (8)

In addition, from Eq. (2) with σ(t) = y(t), the standard sector
inequality follows:

S∆ = 2φ′N1(∆y − φ) ≥ 0 (9)

= 2φ′N1(∆(C2x + D21w + D22φ) − φ) ≥ 0 (10)

where ∆ := diag(δ1, . . . , δm) > 0 and N1 > 0 is any positive defi-
nite diagonal matrix. Also, from Eq. (3), at the values of y at which
Φ(y) is differentiable, we have

φ̇i(δ̄iẏi − φ̇i) ≥ 0. (11)

Thus, as Φ(.) is Lipschitz, we have the following inequality

S∆̄ = 2φ̇′N2(∆̄ẏ − φ̇) ≥ 0 a.e. (12)

where ∆̄ := diag(δ̄1, . . . , δ̄m) > 0 and N2 > 0 is any positive def-
inite diagonal matrix. Evaluation of the above expression requires
knowledge of ẏ, which in turn requires knowledge of ẇ, which is
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