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a b s t r a c t

In this paper we study the optimal stochastic control problem for stochastic differential equations on
Riemannian manifolds. The cost functional is specified by controlled backward stochastic differential
equations in Euclidean space. Under some suitable assumptions,we conclude that the value function is the
unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation which is a fully nonlinear
parabolic partial differential equation on Riemannian manifolds.
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1. Introduction

General nonlinear backward stochastic differential equations
(BSDEs) were introduced independently by Pardoux and Peng [1]
in 1990 and Duffie and Epstein [2] in 1992. Since then this theory
has been widely applied in stochastic control and game theory,
mathematical finance, partial differential equations (PDEs), non-
linear expectations after which were established.

Among these applications, the probabilistic interpretation for
PDEs is very interesting and popular. As we know, a solution of
a linear second order parabolic (or elliptic) equation can be for-
mulated as a functional of a solution of some stochastic differen-
tial equation (SDE) (see [3] for detailed references). For nonlinear
case, Peng [4] gave a probabilistic interpretation for systems of
quasilinear parabolic PDEs. In 1992, Peng [5] used stochastic op-
timal control theory to obtain the probabilistic interpretation for
one kind of fully nonlinear second-order PDE which is the well-
known Hamilton–Jacobi–Bellman (HJB) equation. For more details
in this field, the reader is referred to El Karoui, Peng andQuenez [6],
Peng [7], Barles, Buckdahn and Pardoux [8], Peng and Wu [9], Wu
andYu [10], Buckdahn and Li [11], etc. Thus the theory of the proba-
bilistic interpretation for PDEs provides a powerful tool for study-
ing wider classes of nonlinear equations of parabolic and elliptic
types.
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Since there are many important nonlinear equations which are
full of geometrical meaning, a natural problem is: can one obtain
a similar interpretation for a system of nonlinear PDEs on Rieman-
nian manifolds? This is the objective of this paper. More recently
there appear some research papers on the theory of viscosity so-
lutions to general second order PDEs on Riemannian manifolds
whichmakes the probabilistic interpretation for nonlinear PDEs on
Riemannian manifolds be possible.

Since Crandall and Lions [12] introduced the notion of viscosity
solutions to nonlinear PDEs on Rn in 1980s, this theory has been
applied widely and was enriched and expanded by many mathe-
maticians. We can refer the reader to [12] and the references given
therein. There have been various approaches to extend the theory
of viscosity solutions of first order Hamilton–Jacobi equations, and
the corresponding nonsmooth calculus, to the setting of Rieman-
nianmanifolds, seeMantegazza andMennucci [13], Azagra, Ferrera
and López-Mesas [14], Ledyaev and Zhu [15] and Gursky and Via-
clovsky [16]. For the case of general second order PDEs, the reader
is referred to Azagra, Ferrera and Sanz [17], Azagra, Jiménez-sevilla
and Macià [18], Peng and Zhou [19] and Zhu [20].

In this paper, we investigate the optimal stochastic control
SDEs on Riemannian manifolds. The cost functional is specified by
controlled BSDEs in Euclidean space. The related HJB equation is a
fully nonlinear second order PDE on Riemannian manifolds. To be
more detail, we aim to give a probabilistic interpretation for the
solution of the following HJB equation:

∂tu(t, x) + H(t, x, u, du, d2u) = 0 in [0, T ) × M,
u(T , x) = Φ(x), x ∈ M,

(1.1)
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where du, d2umean dxu(t, x) and d2xu(t, x) and the Hamiltonian

H : [0, T ] × M × R × TM∗

x × L2
s (TMx) → R

is defined as follows:

H(t, x, r, ζ , A)

= inf
v∈U


1
2

d
α=1

v2
α⟨AVα(t, x), Vα(t, x)⟩ + ⟨ζ , v0V0(t, x)⟩

+ f (t, x, r, {⟨ζ , vαVα(t, x)⟩}dα=1, v)


.

Here,M is a compact Riemannianmanifoldwithout boundary, TM∗
x

stands for the cotangent space ofM at a point x, TMx stands for the
tangent space at x and L2

s (TMx) denotes the symmetric bilinear
forms on TMx. U is a compact subset of Rd+1 and V0, V1, . . . , Vd
are d + 1 deterministic one-parameter smooth vector fields on
M . The functions f and Φ are supposed to satisfy (A1) and (A2),
more details in Sections 2 and 4. For this, we consider the following
controlled SDE onM in a fixed time interval [t, T ]:dX t,ζ ;v.

s = v0(s)V0(s, X t,ζ ;v.
s )ds +

d
α=1

Vα(s, X t,ζ ;v.
s ) ◦ vα(s)dWα

s ,

X t,ζ ;v.
t = ζ ∈ M,

and the associated real-valued BSDE is as follows:−dY t,ζ ;v.
s = f (s, X t,ζ ;v.

s , Y t,ζ ;v.
s , Z t,ζ ;v.

s , vs) − Z t,ζ ;v.
s dWs,

s ∈ [t, T ],

Y t,ζ ;v.

T = Φ(X t,ζ ;v.

T ).

Under assumptions (A1) and (A2), they have unique solutions
X .t,ζ ;v. and (Y .t,ζ ;v., Z .t,ζ ;v.), respectively. When ζ = x ∈ M is
deterministic, for any admissible control v(·), the cost functional
is defined by

J(t, x; v(·)) := Y t,x;v.
s |s=t = Y t,x;v.

t , (t, x) ∈ [0, T ] × M.

The value function of our stochastic optimal control problem is:

u(t, x) := essinfv(·)∈Ut,T J(t, x; v(·)), (t, x) ∈ [0, T ] × M,

where Ut,T denotes the set of all admissible controls.
The BSDEmethod developed by Peng [5,7] for the dynamic pro-

gramming of stochastic optimal control is extended into this pa-
per. We will prove that the value function u(t, x) is continuous
in (t, x) ∈ [0, T ] × M , satisfies the dynamic programming prin-
ciple (DPP) and is the unique viscosity solution of the associated
HJB equation (1.1). However, the proofs become more technical.
The square of the distance function on a manifold is not necessar-
ily twice differentiable and we cannot apply Itô’s formula directly.
Therefore we lose many classical estimates about the solutions of
SDEs and BSDEs and must turn to the embedding mapping.

The paper is organized as follows: In Section 2,we introduce the
framework of the stochastic optimal control problem. In Section 3,
we prove that u(t, x) is continuous in (t, x) ∈ [0, T ]×M and satis-
fies the DPP.We show in Section 4 that the value function u(t, x) is
the unique viscosity solution of the associated HJB equation (1.1)
which implies a new existence result for a viscosity solution.

2. Framework

Let (W (t), t ≥ 0) be a d-dimensional standard Brownian mo-
tion on some complete probability space (Ω, F , P). We denote by
(Ft)t≥0 the natural filtration generated by W and augmented by
the P-null sets of F .

Let U be a compact subset of Rd+1. We call a function h : Ω ×

[t, T ] → U an admissible control if it is an adapted stochastic
process. We denote by Ut,T the set of all admissible controls.

Assume that M is a compact Riemannian manifold without
boundary. Let us consider the following controlled SDE on M in a
fixed time interval [t, T ]:

dX t,ζ ;v.
s = v0(s)V0(s, X t,ζ ;v.

s )ds

+

d
α=1

Vα(s, X t,ζ ;v.
s ) ◦ vα(s)dWα

s ,

X t,ζ ;v.
t = ζ ∈ M,

(2.1)

where ζ is Ft-measurable, v. = v(·) := (v0(·), v1(·), . . . , vd(·)) ∈

Ut,T , and V0, V1, . . . , Vd are d + 1 deterministic one-parameter
smooth vector fields onM .

Since M is compact and without boundary, according to [21],
there exists a unique M-valued continuous process which solves
Eq. (2.1). Moreover, this solution does not explode.

Let us consider functions f : [0, T ] ×M × R× Rd
× U → R and

Φ : M → R which satisfy:
(A1) There exists a constant K ≥ 0, s.t., for all t ∈ [0, T ],

x, x′
∈ M , y, y′

∈ R, z, z ′
∈ Rd, v, v′

∈ U ,

|Φ(x) − Φ(x′)| + |f (t, x, y, z, v) − f (t, x′, y′, z ′, v′)|

≤ K(|y − y′
| + |z − z ′

| + d(x, x′) + |v − v′
|).

(A2) There exists a constant K0 ≥ 0, s.t., for all t ∈ [0, T ], x ∈ M ,
v ∈ U ,

|f (t, x, 0, 0, v)| ≤ K0,

where d(·, ·) denotes the Riemannian distance function onM .
Under the above assumptions, according to [7], there exists a

unique pair (Y .t,ζ ;v., Z .t,ζ ;v.) ∈ M(t, T ; R × Rd) which solves the
following BSDE:−dY t,ζ ;v.

s = f (s, X t,ζ ;v.
s , Y t,ζ ;v.

s , Z t,ζ ;v.
s , vs) − Z t,ζ ;v.

s dWs,
s ∈ [t, T ],

Y t,ζ ;v.

T = Φ(X t,ζ ;v.

T ),

(2.2)

where M(0, T ; Rn) denotes the Hilbert space of adapted stochastic
processes φ : Ω × [0, T ] → Rn such that

∥φ∥ =


E

 T

0
|φ(t)|2dt

 1
2

< ∞.

When ζ = x ∈ M is deterministic, we define

J(t, x; v(·)) := Y t,x;v.
s |s=t = Y t,x;v.

t , (t, x) ∈ [0, T ] × M.

This is the so-called cost functional. And then we can define the
value function of the optimal control problem as follows:

u(t, x) := essinfv(·)∈Ut,T J(t, x; v(·)), (t, x) ∈ [0, T ] × M. (2.3)

Our purpose is to get the general DPP and give the probabilistic
interpretation for the associated HJB equation (1.1).

3. Dynamic programming principle

Define

Ut
t,T := {v(·) ∈ Ut,T : v(·) is F t

s -adapted},

where F t
s := σ {Wr − Wt , t ≤ r ≤ s}.

By Proposition 5.1 in [7], there exist {vi(·)}∞i=1, v
i(·) ∈ Ut

t,T ,
such that

u(t, x) = lim
i→∞

J(t, x; vi(·))

and u(t, x) is a deterministic function, i.e.,

u(t, x) := essinfv(·)∈Ut,T J(t, x; v(·)) = inf
v(·)∈Ut

t,T

J(t, x; v(·)).
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