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h i g h l i g h t s

• A new MPC suitable for closed-loop re-identification is proposed.
• A re-identification needs to be developed in a closed-loop fashion, since the process cannot be stopped.
• The main problem is the conflict between the control and identification objectives.
• A generalization, from punctual stability to (invariant) set stability, is done to avoid the conflict.
• The proposal could be potentially applied to real processes.
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a b s t r a c t

Themain problem of a closed-loop re-identification procedure is that, in general, the dynamic control and
identification objectives are conflicting. In fact, to perform a suitable identification, a persistent excitation
of the system is needed, while the control objective is to stabilize the system at a given equilibrium point.
However, a generalization of the concept of stability, from punctual stability to (invariant) set stability,
allows for a flexibility that can be used to avoid the conflict between these objectives. Taking into account
that an invariant target set includes not only a stationary component, but also a transient one, the system
could be excited without deteriorating the stability of the closed-loop. In this work, a MPC controller is
proposed that ensures the stability of invariant sets at the same time that a signal suitable for closed-
loop re-identification is generated. Several simulation results show the propose controller formulation
properties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Model predictive control (MPC) is typically implemented as a
lower stage of a hierarchical control structure. The upper level
stages are devoted to compute, by means of a stationary optimiza-
tion, the targets that the dynamic control stage (MPC) should reach
to economically optimize the operation of the process. Since both
the dynamic and stationary optimizations are model-based opti-
mizations, a periodic updating of themodel parameters are desired
to reach meaningful optimums. In this context, a re-identification
procedure should be developed in a closed-loop fashion, since the
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process cannot be stopped each time an update is needed. As it
is known, the main problem of a closed-loop identification is that
the dynamic control objectives are incompatible with the identi-
fication objectives [1]. In fact, to perform a suitable identification,
a persistent excitation of the system modes is needed, while the
controller takes this excitation as disturbance and tries to reject
this disturbance to stabilize the system.

From a general point of view, the closed-loop identification
methods fall into the following main groups [2]. The direct ap-
proach ignores the feedback law and identifies the open-loop
system using measurements of the input and the output. The in-
direct approach identifies the closed-loop transfer function and
determines the open-loop parameters subtracting the controller
dynamic. To do that, the controller dynamics must be linear and
known. The joint input–output approach takes the input and out-
put jointly, as the output of a system produced by some extra in-
put or set-point signal. Since the last two methods need the exact
knowledge of a linear controller, they are not directly applicable
for closed-loops under constrained MPC controllers.
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Several strategies were developed to perform closed-loop re-
identification under MPC controllers: [3] proposed a controller
namedModel Predictive Control and Identification (MPCI) where a
persistent excitation condition is added by means of an additional
constraint in the optimization problem. This strategy, which was
explored later in [4], turns the MPC optimization problem non-
convex, and so, most of the well-known properties of the MPC
formulation cannot be established. [5] proposed a strategy that
manipulates the steady-state target optimization (in the hierarchi-
cal MPC control structure) in order to excite the system. In the con-
text of data-driven MPC formulations (i.e., MPC that are designed
to perform predictions directly from collected data), the subspace
identification method is exclusively used [6]. In [7–9] several ap-
proaches are presented, where a closed-loop re-identification is
needed to update the data for predictions. Though preliminary
studiesweremade according to the trade-off between stability and
excitation, no definitive results were presented.

In general, none of the reports cited in this section have shown
results regarding the system stability of the MPC while the system
is being re-identified. In thiswork, based on the concept of stability
of an invariant set (as a generalization of stability of a point), aMPC
controllerwith a extended domain of attraction is proposed, which
ensures stability at the same time that a persistent excitation
can be generated to perform a closed-loop re-identification. Some
preliminary results regarding the complete strategy presented in
this work were recently presented in [10].

Notation. Matrices In ∈ Rn×n and 0n,m ∈ Rn×m denote the iden-
tity matrix and the null matrix, respectively. A C-set is a convex
and compact set that contains the origin. A proper C-set is a C-
set that contains the origin as an interior point. Consider two sets
U ⊆ Rn and V ⊆ Rn, containing the origin and a real number λ.
TheMinkowski sumU⊕V ⊆ Rn is defined byU⊕V = {(u+v) :

u ∈ U, v ∈ V}; the set (U \ V) ⊆ Rn is defined as U \ V =

{u : u ∈ U ∧ u ∉ V}; and the setλU = {λu : u ∈ U} is a scaled set
ofU. |v|V is the distance from v toV . The boundary of a setU is de-
fined as ∂U. Given a continuous function Ψ : Rn

→ R, and γ ≥ 0,
the level set N [Ψ , γ ] is defined by N [Ψ , γ ] = {x : Ψ (x) ≤ γ }.
Im:n denotes the nonnegative integers from m to n. Given x ∈ Rn

and y ∈ Rn, ∥x − y∥2
M = (x − y)TM(x − y), with M ∈ Rn×n.

2. Problem statement and preliminaries

Consider a systemdescribed by a linear time-invariant discrete-
time model

x+
= Ax + Bu, y = Cx,

where x ∈ Rn is the system state, x+ is the successor state, u ∈ Rm

is the current control, and y ∈ Rp is the system output. The state,
the control input and the output at discrete-time instant k are de-
noted as x(k), u(k) and y(k), respectively. The system is subject to
hard constraints on state and input, (x(k), u(k)) ∈ Z , (X×U) ⊂

Rn+m for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm. Furthermore, the
following assumption holds:

Assumption 1. Matrix A has all its eigenvalues strictly inside the
unit circle, the pair (A, B) is controllable and the state (correspond-
ing to the true plant) is measured at each discrete-time instant.
Furthermore, the set X is convex and closed, the set U is convex
and compact and both contain the origin in their interior. For sim-
plicity, AX ⊆ λX, with λ ∈ [0, 1).

Previous to the controller formulation, some necessary defini-
tions helpful to generalize the concepts of equilibrium and invari-
ance are introduced. To simplify the notation, we denote system

x+
= Ax + Bu, (x, u) ∈ Z as Non-autonomous system (Nsys) and

system x+
= Ax + Bκ(x), (x, κ(x)) ∈ Z, where κ(x) is a state

feedback, as the Controlled system (Csys). Accordingly, for a given
sequence of control inputs, u = {u(0), . . . , u(j − 1)} and a given
initial state x(0) = x, the solution ofNsys will be denoted as: x(j) =

φ(j; x,u) = Ajx(0) +
j−1

i=0 A
j−i−1Bu(i), j ∈ I≥1. Similarly, for a

given initial state x(0) = x, the solution of Csys will be denoted as:
x(j) = φκ(j; x) = Ajx(0) +

j−1
i=0 A

j−i−1Bκx(i), j ∈ I≥1, for j ∈ I≥1.

Definition 1 (Control Equilibrium Set—CES). A set Ω ⊆ X is a con-
trol equilibrium set for Nsys, if for every point x ∈ Ω the condition
x+

= x holds for some u ∈ U.

The maximal CES, Xss, is given by Xss = (GBU) ∩ X, where
G = (In − A)−1. In the case of controlled systems, Csys, we simply
say that a control equilibrium setΩ is an equilibrium set—(ES), with
u = κ(x). The proper generalization of the concept of equilibrium
point is not the concept of equilibrium set, as a mere aggregation
of steady-state points, but the concept of invariant set (associated
to an equilibrium set), in the sense that both the equilibrium point
and the invariant set are geometric entities such that, if the system
reaches them, it remains in them indefinitely [11–13]:

Definition 2 (λ-Control Invariant Set—λ-CIS). A proper C-set Ω ⊆

X is λ-control invariant, with λ ∈ [0, 1], for Nsys, if x ∈ Ω implies
x+

∈ λΩ , for some u ∈ U.

Again, in the case of controlled systems,Csys, a λ-Control Invari-
ant set is simply a λ-Invariant Set—(λ-IS), with u = κ(x). Further-
more, if λ = 1, the sets are simply Invariant sets, and if λ ∈ [0, 1),
the sets are known as Contractive sets. The concept of invariant set,
as a generalization of an equilibriumpoint,makes possible the gen-
eralization of the concept of attractivity of an equilibrium point.
Then, we can define the attractivity of an IS set as follows [14]:

Definition 3 (Local Attractivity of An IS Set). The IS set Ω ⊂ X
is locally attractive for Csys if for each x in a vicinity of Ω (that
we call the domain of attraction), it follows that |φκ(j; x)|Ω →

0, φκ(j; x) ∈ X, κ(φκ(j; x)) ∈ U as j → ∞.

3. Target invariant set for identification

The objective of this section is to propose a set (in the state
space) that is invariant under the excitation procedure necessary
to perform a suitable identification and, at the same time, can be
used as the attractive target set (generalized equilibrium) by an
MPC controller. As known, to estimate a model frommeasured in-
put and output data, each (controllable) mode of the system must
be excited. To do that, the excitation input signal must contain
enough variability. This property is generally indicated by the no-
tion of persistence of excitation [15]. The persistent excitation input
sequencesmight be of several forms, going from a Pseudo-Random
Binary Signal (PRBS) to a Filtered PseudoGaussianWhiteNoise Sig-
nal. A recent formulation proposed a filtered Gaussian inputs sig-
nal specifically designed for MPC [16]. Independently of the form,
thepersistent excitation sequences have twomainproperties: they
are bounded, belonging to a compact set smaller thanU, andmore
subtle, they have a persistent-variability behavior. Regarding the
first property, we define:

Definition 4 (Excitation Input Set, EIS).An input proper C-setUt
⊂

U ⊂ Rm, with enough size to excite the system will be denoted as
the excitation input set.

The set Ut defines a class of sequences u = {u(0), . . . , u(Tid −

1)} – denoted by CUt – such that u(i) ∈ Ut for i ∈ I0:Tid−1,
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