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A B S T R A C T

In many chemical engineering applications, it is often difficult to get accurate first-principle models because of
complexity of modern processes. Even if it is possible to do so, it is often time consuming and computationally
expensive. Hence, there is a growing need to develop data-driven models. Gaussian process regression (GPR)
model has been extensively applied in data-based modelling due to its good adaptability to deal with high
dimensional, small samples, and nonlinear problems. The standard GPR algorithm assumes constant noise power
throughout the sampling process. However, in process systems, the observation noise often varies so that different
sample points are corrupted by different degrees of noise. Under these circumstances, the standard GPR algorithm
may not work properly. To model Gaussian process with heteroscedastic noise, this paper introduces a weighting
strategy into the standard GPR algorithm, and proposes three weighted GPR algorithms: the clustered GPR (C-
GPR) algorithm, the partial weighted GPR (PW-GPR) algorithm and the weighted GPR (W-GPR) algorithm.
Different from the standard GPR algorithm, three weighted algorithms put the weight on sampled data by
calculating the noise variance for each data point. In addition, in order to optimize the proposed algorithms, this
paper utilizes the particle swarm optimization (PSO) algorithm to estimate hyper-parameters of the GPR model,
instead of using the traditional conjugate gradient (CG) method. The effectiveness of the three weighted GPR
algorithms is verified by means of two numerical examples and a wet spinning coagulation process. Extensive
simulation results demonstrate that the proposed algorithms optimized by the PSO algorithm can improve pre-
diction accuracy of the GPR model.

1. Introduction

In many industrial sectors, such as the chemical, automotive and
semiconductor industries, it is common to rely on mathematical/com-
puter models to guide process operations [1–4]. However, it is often
difficult to get accurate first-principle models because of complexity of
modern industries. Even if the complex mechanism of the system is
known, it is often time consuming and expensive to build a detailed
model [5]. For such systems, since it is difficult to derive the
first-principle models, data-driven modelling approaches, such as neural
networks, support vector regression and Gaussian process regression
(GPR) modelling, can provide a good alternative [6–10].

The Gaussian process regression (GPR) algorithm is a recently
developed nonlinear modelling method in the field of machine learning.

It has sound theoretical basis in Statistics, and it has a good adaptability
to high dimension, small sample set, and nonlinear problems, as well as
strong generalization ability [11]. In addition, compared to other
regression models such as support vector machine, fuzzy model, and
neural networks, GPR model is easy to implement, its hyper-parameters
could be adaptively acquired, and output prediction is associated with
probability distribution [10–12]. Due to these advantages, GPR algo-
rithms have gained rapid development and attracted a lot of research
interests. In recent years, GPR has become one of the main focuses of
research in the field of machine learning [12–14], and it has been suc-
cessfully used in many applications [15–17].

In many real industrial processes, it is impossible to get exact values of
process variables. The collected data are usually accompanied by noise.
The standard GPR algorithm assumes constant noise power throughout
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the whole sampling process. It assumes each output measurement is
affected by homoscedastic Gaussian white noise, which has a constant
variance everywhere [18,19]. This assumption of homoscedastic
Gaussian noise makes GPR inference to be more computationally trac-
table. But, it has limitation when applied to many practical engineering
problems. In process systems, owing to some disturbances, such as the
malfunction of sensors and incorrect measuring by technicians, output
measurements may corrupted with heteroscedastic Gaussian white noise
[20,21]. In this heteroscedastic noise scenario, the effectiveness of the
prediction can be weakened if we assume variance of each observation to
be the same while the reality is otherwise. To deal with the hetero-
scedastic noise problem mentioned above, this paper develops three
different weighting strategies, on the basis of the standard GPR method,
and proposes the clustered GPR (C-GPR) algorithm, the partial weighted
GPR (PW-GPR) algorithm and the weighted GPR (W-GPR) algorithm. The
proposed weighted GPRs improve prediction effectiveness and predic-
tion accuracy of the GPR model since they consider the GPR model with
the varying noise variances which evaluated by employing repeated
sampling, and it lead to that different sample has different weight in the
GPR modelling. This paper is the significantly extended version of our
conference paper [22] which focuses only on the W-GPR algorithm.

Optimization of hyper-parameters is an important part of modelling
Gaussian process, and it is related to the reliability of the regression
model. The conjugate gradient (CG) algorithm is one of the most
commonly-used methods [11,13,23] to estimate parameters. But, this
optimization method relies heavily on the selection of initial guess, and it
is difficult to determine the number of iterations. In addition, for most of
the GPR estimation, optimization of hyper-parameters is not a convex
optimization problem. Thus, the gradient based method can easily result
in local optimum [24,25]. To increase prediction accuracy of the pro-
posed GPR models, this paper considers a swarm intelligence algorithm -
particle swarm optimization (PSO) algorithm [26,27], instead of the
traditional gradient method, for the optimization of hyper-parameters of
the GPR model. The PSO algorithm is a kind of evolutionary algorithm
based on the flock foraging swarm intelligence relationship [26].
Compared with the CG algorithm, this method does not rely on the se-
lection of the initial guess and is simple and feasible in addressing the
problem of global optimization since it has strong global search ability
and its information sharing mechanism is helpful for a rapid convergence
[28–30]. Also, it has been proved to improve the prediction accuracy of
the standard GPR model [28]. Due to these advantages, the PSO algo-
rithm will be used to estimate the optimal parameters of the proposed
GPR models by finding the maximum likelihood.

The main contributions of this paper are as follows: (i) three different
weighting strategies are developed in the GPR model for different noise
scenarios, respectively, and the C-GPR, the PW-GPR and the W-GPR al-
gorithms are proposed with their application scope; (ii) the PSO algo-
rithm is utilized to optimize the proposed weighted GPR models.

The rest of the paper is outlined as follows. Section 2 introduces the
principle of the standard GPR. Section 3 proposes three GPR algorithms
with weighting strategy, namely the C-GPR algorithm, the PW-GPR al-
gorithm, and the W-GPR algorithm. Section 4 uses the PSO algorithm to
search the optimal hyper-parameters of the GPR model. Simulation ex-
amples are given in Section 5. The conclusion is provided in Section 6.

2. The standard GPR algorithm

GPR algorithm is among the functional approximation methods of
supervised learning in the field of machine learning. The algorithm is
used to evaluate the distribution of value function with the sample data.
From the standpoint of function space, we describe the distribution of a
function by defining a Gaussian process (GP). Further, we can directly
conduct Bayesian inference in this function space [11,12,31]. The formal
definition of the GP is given below.

Definition 1. [12]. A GP is a collection of random variables, any finite

number of which has (consistent) joint Gaussian distributions.
Indeed, a GP is completely determined by its mean function and

covariance function, that is to say, if mean function mðXÞ and covariance
function kðX;X0Þ are known, we can fully determine the GP. Obviously, if
the mean and covariance are a vector and matrix respectively, we will
have the following functional distribution:

GP : f ðXÞ � GP
�
mðXÞ; k�X;X '� � (1)

where, mðXÞ ¼ E½f ðXÞ�, kðX;X 0Þ ¼ E½ðf ðXÞ �mðXÞÞðf ðX 0Þ �mðXÞÞ�. f ðXÞ
represents the underlying function value at the input X, and the n func-
tion values F ¼ ff ðX1Þ;⋯; f ðXnÞg can be assumed as a n-variates joint
Gaussian distribution. For convenience, we usually assume that mean of
an arbitrary point of this joint Gaussian distribution is 0. This can be
achieved by mean centering data in practice. Thus, the correlation be-
tween different sample points only depends on the covariance function
kðX;X 0Þ. In GPR, we often choose ‘square exponential function’ to
describe the covariance function as follows:

kðX;X0Þ ¼ σ2f exp

 
� ðX � X0Þ2

2l2

!
(2)

where, The length parameter l determines how the distance between
variables X and X 0 affects the correlation between them. σ2f is a variance
term of the covariance function. If X ¼ X 0, then kðX;X 0Þ approaches the
maximum correlation, which means f ðXÞ is nearly perfectly correlated
with f ðX 0Þ. If X is far away from X 0, we have instead kðX;X 0Þ � 0,
meaning almost no correlation between two points.

Consider the standard GPR model with noise:

yðXÞ ¼ f ðXÞ þ ε (3)

where, f is an underlying function, and function value f ðXÞ conforms to
the distribution described by Equation (1). X is the input variable, and
yðXÞ is the observed value corrupted by noise. In standard GPR, ε is
assumed as the homoscedastic Gaussian white noise which has the
following distribution:

ε � N
�
0; σ2

n

�
(4)

The main objective of GPR modelling is to evaluate the function value
f ðX*Þ at the new input X*. In fact, for multivariate input variables, the
covariance function in Equation (2) can be expressed in a more general
form as:

kðX;X0Þ ¼ σ2f exp

 
�
Xd
h¼1

�
xh � x0h

�2
2l2h

!
(5)

where, d is the dimension of the input X, xh and x0h, h ¼ 1;⋯; d are h-th
dimension of inputs X 2 ℝd and X 0 2 ℝd, respectively. lh represent the
characteristic length-scale corresponding to the h-th input variable
dimension.

Consider a training sample set S ¼ fðXi; yiÞ; i ¼ 1;⋯; ng, where n is
the number of the given sample, Xi 2 ℝd is the input variable vector at
sampling instant i, and yi 2 ℝ is the corresponding output variable. Now,
given a new input X*, we need to estimate the underlying function value
f* ¼ f ðX*Þ by a relationship established in the data set S. According to
assumptions for Gaussian process described above, the function value
F ¼ ff ðX1Þ;⋯; f ðXnÞg follows joint Gaussian distributions, that is,
F � Nð0;VarðFÞÞ. Hence, n observations Y ¼ fy1;⋯; yng together with
the new function value f* can be considered as a multivariate Gaussian
process. The distribution of Y can be written as below:

Y � N
�
0;VarðFÞ þ σ2

nIn
�

(6)

and the joint distribution between Y and f* is:
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