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a b s t r a c t

In the past few years there has been a growing interest in the use of symbolic models for control systems.
The main reason is the possibility to leverage algorithmic techniques over symbolic models to synthesize
controllers that are valid for the concrete control systems. Such controllers can enforce complex logical
specifications that are otherwise hard (if not impossible) to establish on the concretemodelswith classical
control techniques. Examples of such specifications include those expressible via linear temporal logic or
as automata on infinite strings. A relevant goal in this research line is in the identification of classes of
systems that admit symbolic models: in particular, continuous-time systems with stochastic or hybrid
dynamics have been only recently considered, due to their rather general and complex dynamics. In this
work we make progress in this direction by enlarging the class of stochastic hybrid systems admitting
finite, symbolicmodels: specifically, we show that randomly switched stochastic systems, satisfying some
incremental stability assumption, admit such models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic hybrid systems represent a general class of dynami-
cal systems that combine continuous dynamics with discrete com-
ponents and that are affected by continuous probabilistic terms as
well as discrete random events. Numerous real-life systems from
fields such as biochemistry [1], air traffic control [2], systems bi-
ology [3], and communication networks [4], can be modeled as
stochastic hybrid systems. Randomly switched stochastic systems,
also known as switching stochastic systems [5], are a relevant sub-
class of general stochastic hybrid systems. They consist of a finite
family of subsystems (modes, or locations), together with a ran-
dom switching signal that specifies the active subsystem at every
time instant. Each subsystem is further endowed with continuous
probabilistic dynamics, described by a control-dependent stochas-
tic differential equation.

✩ This work is supported by the European Commission STREP project MoVeS
257005.
∗ Corresponding author. Tel.: +49 0 1724610879.

E-mail addresses: zamani@tum.de (M. Zamani), alessandro.abate@cs.ox.ac.uk
(A. Abate).

URLs: http://www.hcs.ei.tum.de (M. Zamani),
http://www.cs.ox.ac.uk/people/alessandro.abate (A. Abate).

Quite some research has recently focused on characterizing
classes of systems, involving continuous and possibly discrete
components, that admit symbolicmodels. A symbolicmodel is a fi-
nite discrete approximation of a concretemodel, resulting from re-
placing equivalent (sets of) continuous states by discrete symbols.
Symbolic models are interesting because they allow the applica-
tion of algorithmic machinery for controller synthesis on discrete
systems [6] towards the synthesis of hybrid controllers for the cor-
responding concrete complexmodels. Such controllers are synthe-
sized to satisfy classes of specifications that traditionally have not
been considered in the context of control theory: these include
specifications involving regular languages and temporal logics [7].

The search for classes of continuous-time stochastic systems
admitting symbolic models include results on stochastic dynam-
ical systems under contractivity assumptions [8], which are valid
only for autonomous models (i.e. with no control input); on prob-
abilistic rectangular automata [9] endowed with random behav-
iors exclusively on their discrete components and with simple
continuous dynamics; on linear stochastic control systems [10],
however without any quantitative relationship between abstract
and concrete models; on stochastic control systems without any
stability assumptions, but with no hybrid dynamics [11]; on
incrementally-stable stochastic control systems without discrete
components [12] and without requiring state-space discretiza-
tion [13]; and finally on incrementally-stable stochastic switched
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systems [14] where the discrete dynamics, in the form of mode
changes, are governed by a non-probabilistic control signal. The
results in [11–14] are based on the notion of (alternating) approx-
imate (bi)simulation relation, introduced in [15,16]. Notions of
bisimulation for continuous-time stochastic hybrid systems have
also been studied in [17], althoughwith a different goal than that of
synthesizing symbolic models: while we are interested in the con-
struction of bisimilar models that are finite, the work in [17] uses
bisimulation to relate continuous (and thus infinite) stochastic hy-
brid systems. Finally, there exist discretization results based on
weak approximations of continuous-time stochastic control sys-
tems [18] and of continuous-time stochastic hybrid systems [19],
however these do not provide any explicit approximation bound.

To the best of our knowledge there is no work on the construc-
tion of finite bisimilar abstractions for continuous-time switch-
ing stochastic systems where the discrete dynamics, in the form
of mode changes, are governed by a random switching signal.
Models for these systems have become ubiquitous in engineering
applications, such as power electronics [20], manufacturing [21],
economic and finance [22]: automated controller synthesis tech-
niques for this class of models can thus lead to more reliable sys-
tem development at lower costs and times.

The main contribution of this paper is to show that switching
stochastic systems, under some incremental stability assumption, ad-
mit symbolic models that are alternatingly approximately bisimilar to
the concrete ones, with a precision (say ε) that can be chosen a-priori,
as a design parameter. More precisely, by guaranteeing the exis-
tence of an alternating ε-approximate bisimulation relation be-
tween concrete and symbolicmodels, one deduces that there exists
a controller enforcing a desired complex specification on the sym-
bolic model if and only if there exists a hybrid controller enforc-
ing an ε-specification on the original switching stochastic system.
We show the description of the discussed incremental stability
property in terms of a so-called common Lyapunov function (with
requires no probabilistic structure on the switching signal), or al-
ternatively in terms of multiple Lyapunov functions with some
fairly general probabilistic structure on the switching signal.

Building upon [12,14], the result of this paper extends that in
[12] from a single stochastic control system to a number of ran-
domly switching stochastic systems, and the result in [14] from
multiple stochastic dynamical systems with mode changes that
are governed by a non-probabilistic controlled signal to multiple
stochastic control systems in which mode changes are governed
by a random (uncontrolled) signal. The presence of a randomly
switching signal in this paper requires to provide novel symbolic
models: these allow transferring the synthesized control strategies
directly to the original system, regardless of the particular evolu-
tion of the switching signal.

2. Randomly switched stochastic systems

2.1. Notation

The identity map on a set A is denoted by 1A. If A is a subset of B,
we denote by ıA : A ↩→ B or simply by ı the natural inclusion map
taking any a ∈ A to ı(a) = a ∈ B. Given a set A ⊆ Rn, the sym-
bol A denotes the topological closure of A. The symbols N,N0,Z,
R, R+, and R+

0 denote the set of natural, nonnegative integer, in-
teger, real, positive, and nonnegative real numbers, respectively.
The symbols 0n and 0n×m denote the zero vector and matrix in Rn

and Rn×m, respectively. Given a vector x ∈ Rn, we denote by xi
the ith element of x, and by ∥x∥ the infinity norm of x, namely,
∥x∥ = max{|x1|, |x2|, . . . , |xn|}, where |xi| denotes the absolute
value of xi. Given matrices M = {mij} ∈ Rn×m and P = {pij}
∈ Rn×n, we denote by ∥M∥ the infinity norm of M , namely,
∥M∥ = max1≤i≤n

m
j=1 |mij|; by Tr(P) the trace of P , namely,

Tr(P) =
n

i=1 pii; by ∥M∥F the Frobenius norm of M , namely,

∥M∥F =


Tr

MMT


; and by λmin(P) and λmax(P) the minimum

and maximum eigenvalues of a symmetric matrix P , respectively.
We denote by∆ the diagonal set, namely,∆ = {(x, x) | x ∈ Rn}.

The closed ball centered at x ∈ Rn with radius λ is defined
by Bλ(x) = {y ∈ Rn

| ∥x − y∥ ≤ λ}. A set B ⊆ Rn is
called a box if B =

n
i=1[ci, di], where ci, di ∈ R with ci <

di for each i ∈ {1, . . . , n}. The span of a box B is defined as
span(B) = min{|di − ci| | i = 1, . . . , n}. By defining [Rn

]η =

{a ∈ Rn
| ai = kiη, ki ∈ Z, i = 1, . . . , n}, the set


p∈[Rn]η

Bλ(p) is
a countable covering of Rn for any η ∈ R+ and λ ≥ η/2. For a box
B and η ≤ span(B), define the η-approximation [B]η = [Rn

]η ∩ B.
Note that [B]η ≠ ∅ for any η ≤ span(B) and that for any η ∈ R+

with η ≤ span(B) and λ ≥ η, we have B ⊆


p∈[B]η Bλ(p). We ex-
tend the notions of span and of approximation to finite unions of
boxes as follows. Let A =

M
j=1 Aj, where each Aj is a box. Define

span(A) = min{span(Aj) | j = 1, . . . ,M}, and for any η ≤ span(A),
define [A]η =

M
j=1[Aj]η .

Given a set X and ametric d : X×X → R+

0 , we denote by dh the
Hausdorff pseudometric induced by d on 2X ; we recall that for any
X1, X2 ⊆ X , dh (X1, X2) := max


d⃗h (X1, X2) , d⃗h (X2, X1)


, where

d⃗h (X1, X2) = supx1∈X1 infx2∈X2 d(x1, x2) is the directed Hausdorff
pseudometric. Given a measurable function f : R+

0 → Rn, the (es-
sential) supremum (sup norm) of f is denoted by ∥f ∥∞; we recall
that ∥f ∥∞ = (ess) sup {∥f (t)∥, t ≥ 0}. A continuous function γ :

R+

0 → R+

0 , is said to belong to classK if it is strictly increasing and
γ (0) = 0; γ is said to belong to classK∞ if γ ∈ K and γ (r) → ∞

as r → ∞. A continuous function β : R+

0 × R+

0 → R+

0 is said to
belong to class KL if, for each fixed s, the map β(r, s) belongs to
class K with respect to r and, for each fixed nonzero r , the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞.
We identify a relation R ⊆ A× Bwith the map R : A → 2B defined
by b ∈ R(a) iff (a, b) ∈ R. Given a relation R ⊆ A × B, R−1 denotes
the inverse relation defined by R−1

= {(b, a) ∈ B× A : (a, b) ∈ R}.

2.2. Randomly switched (a.k.a. switching) stochastic systems

Let (Ω,F ,P) be a probability space endowed with a filtration
F = (Ft)t≥0 satisfying the usual conditions of completeness
and right-continuity [23, p. 48]. Let {Wt}t≥0 be aq-dimensional
F-adapted Brownian motion [24].

Definition 2.1. A switching stochastic system is a tuple Σ =

(Rn,U,U, P,P , F ,G), where

• Rn is the continuous state space;
• U ⊆ Rm is a compact input set;
• U is a subset of the set of all measurable functions of time, from

R+

0 to U;
• P = {1, . . . ,m} is a finite set of modes;
• P is a subset of the set of all piecewise constant càdlàg

(i.e. right-continuous and with left limits) functions of time
from R+

0 to P, and characterized by a finite number of
discontinuities on every bounded interval in R+

0 (no Zeno
behavior);

• F = {f1, . . . , fm} is such that, for any p ∈ P, fp : Rn
×

U → Rn satisfies the following Lipschitz assumption: there
exist constants Lpx, L

p
u ∈ R+ such that ∥fp(x, u) − fp(x′, u′)∥ ≤

Lpx∥x − x′
∥ + Lpu∥u − u′

∥, for all x, x′
∈ Rn and all u, u′

∈ U;
• G = {g1, . . . , gm} is such that, for any p ∈ P, gp : Rn

→

Rn×q satisfies the following Lipschitz assumption: there exists a
constant Zp ∈ R+ such that, for all x, x′

∈ Rn: ∥gp(x)−gp(x′)∥ ≤

Zp∥x − x′
∥.



Download	English	Version:

https://daneshyari.com/en/article/756235

Download	Persian	Version:

https://daneshyari.com/article/756235

Daneshyari.com

https://daneshyari.com/en/article/756235
https://daneshyari.com/article/756235
https://daneshyari.com/

